In homomorphic encryption schemes, anyone can perform homomorphic operations, and therefore, it is difficult to manage when, where and by whom they are performed. In addition, the property that anyone can "freely" perform the operation inevitably means that ciphertexts are malleable, and it is well-known that adaptive chosen ciphertext (CCA) security and the homomorphic property can never be achieved simultaneously. In this paper, we show that CCA security and the homomorphic property can be simultaneously handled in situations that the user(s) who can perform homomorphic operations on encrypted data should be controlled/limited, and propose a new concept of homomorphic publickey encryption, which we call keyed-homomorphic public-key encryption (KH-PKE). By introducing a secret key for homomorphic operations, we can control who is allowed to perform the homomorphic operation. To construct KH-PKE schemes, we introduce a new concept, transitional universal property, and present a practical KH-PKE scheme with multiplicative homomorphic operations from the decisional Diffie-Hellman (DDH) assumption. For ℓ-bit security, our DDH-based KH-PKE scheme yields only ℓ-bit longer ciphertext size than that of the Cramer-Shoup PKE scheme. Finally, we consider an identitybased analogue of KH-PKE, called keyed-homomorphic identity-based encryption (KH-IBE) and give its concrete construction from the Gentry IBE scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.