The immense growth and penetration of electric vehicles has become a major component of smart transport systems; thereby decreasing the greenhouse gas emissions that pollute the environment. With the increased volumes of electric vehicles (EV) in the past few years, the charging demand of these vehicles has also become an immediate requirement. Due to which, the prediction of the demand of electric vehicle charging is of key importance so that it minimizes the burden on the electric grids and also offers reduced costs of charging. In this research study, an attempt is made to develop a novel deep learning (DL)-based long-short term memory (LSTM) recurrent neural network predictor model to carry out the forecasting of electric vehicle charging demand. The parameters of the new deep long-short term memory (DLSTM) neural predictor model are tuned for its optimal values using the classic arithmetic optimization algorithm (AOA) and the input time series data are decomposed so as to maintain their features using the empirical mode decomposition (EMD). The novel EMD—AOA—DLSTM neural predictor modeled in this study overcomes the vanishing and exploding gradients of basic recurrent neural learning and is tested for its superiority on the EV charging dataset of Georgia Tech, Atlanta, USA. At the time of simulation, the best results of 97.14% prediction accuracy with a mean absolute error of 0.1083 and a root mean square error of 2.0628 × 10−5 are attained. Furthermore, the mean absolute error was evaluated to be 0.1083 and the mean square error pertaining to 4.25516 × 10−10. The results prove the efficacy of the prediction metrics computed with the novel deep learning LSTM neural predictor for the considered dataset in comparison with the previous techniques from existing works.
A novel Variational Mode Decomposition (VMD) combined Fuzzy-Twin Support Vector Machine Model with deep learning mechanism is devised in this research study to forecast the solar Photovoltaic (PV) output power in day ahead basis. The raw data from the solar PV farms are highly fluctuating and to extract the useful stable components VMD is employed. A novel Fuzzy–Twin Support Vector Machine (FTSVM) model developed acts as the forecasting model for predicting the solar PV output power for the considered solar farms. The twin support vector machine (SVM) model formulates two separating hyperplanes for predicting the output power and in this research study a fuzzy based membership function identifies most suitable two SVM prediction hyperplanes handling the uncertainties of solar farm data. For the developed, new VMD-FTSVM prediction technique, their optimal parameters for the training process are evaluated with the classic Ant Lion Optimizer (ALO) algorithm. The solar PV output power is predicted using the novel VMD-FTSVM model and during the process multi-kernel functions are utilized to devise the two fuzzy based hyperplanes that accurately performs the prediction operation. Deep learning (DL) based training of the FTSVM model is adopted so that the deep auto-encoder and decoder module enhances the accuracy rate. The proposed combined forecasting model, VMD-ALO-DLFTSVM is validated for superiority based on a two 250MW PV solar farm in India. Results prove that the proposed model outperforms the existing model in terms of the performance metrics evaluated and the forecasted PV Power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.