• Genetic-or compound CB-839-induced GAC inhibition reduces OXPHOS and has antileukemic activity in AML.• GAC inhibition synergizes with BCL-2 inhibition by compound ABT-199.Cancer cells require glutamine to adapt to increased biosynthetic activity. The limiting step in intracellular glutamine catabolism involves its conversion to glutamate by glutaminase (GA). Different GA isoforms are encoded by the genes GLS1 and GLS2 in humans. Herein, we show that glutamine levels control mitochondrial oxidative phosphorylation (OXPHOS) in acute myeloid leukemia (AML) cells. Glutaminase C (GAC) is the GA isoform that is most abundantly expressed in AML. Both knockdown of GLS1 expression and pharmacologic GLS1 inhibition by the drug CB-839 can reduce OXPHOS, leading to leukemic cell proliferation arrest and apoptosis without causing cytotoxic activity against normal human CD34 1 progenitors. Strikingly, GLS1 knockdown dramatically inhibited AML development in NSG mice. The antileukemic activity of CB-839 was abrogated by both the expression of a hyperactive GAC K320A allele and the addition of the tricarboxyclic acid cycle product a-ketoglutarate, indicating the critical function of GLS1 in AML cell survival. Finally, glutaminolysis inhibition activated mitochondrial apoptosis and synergistically sensitized leukemic cells to priming with the BCL-2 inhibitor ABT-199. These findings show that targeting glutamine addiction via GLS1 inhibition offers a potential novel therapeutic strategy for AML. (Blood. 2015;126(11):1346-1356
IMPORTANCEYounger age, oligoclonal bands, and infratentorial and spinal cord lesions are factors associated with an increased 10-year risk of clinical conversion from radiologically isolated syndrome (RIS) to multiple sclerosis (MS). Whether disease-modifying therapy is beneficial for individuals with RIS is currently unknown. OBJECTIVES To evaluate the 2-year risk of a clinical event (onset of clinical symptoms of MS) prospectively, identify factors associated with developing an early clinical event, and simulate the sample size needed for a phase III clinical trial of individuals with RIS meeting 2009 RIS criteria. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data on prospectively followed-up individuals with RIS identified at 1 of 26 tertiary centers for MS care in France that collect data for the Observatoire Français de la Sclérose en Plaques database. Participants were aged 10 to 80 years with 2 or more magnetic resonance imaging (MRI) scans after study entry and an index scan after 2000. All diagnoses were validated by an expert group, whose review included a double centralized MRI reading. Data were analyzed from July 2020 to January 2021. EXPOSURE Diagnosis of RIS. MAIN OUTCOMES AND MEASURES Risk of clinical event and associated covariates at index scan were analyzed among all individuals with RIS. Time to the first clinical event was compared by covariates, and sample size estimates were modeled based on identified risk factors. RESULTS Among 372 individuals with RIS (mean [SD] age at index MRI scan, 38.6 [12.1] years), 354individuals were included in the analysis (264 [74.6%] women). A clinical event was identified among 49 patients (13.8%) within 2 years, which was associated with an estimated risk of conversion of 19.2% (95% CI, 14.1%-24.0%). In multivariate analysis, age younger than 37 years (hazard ratio [HR], 4.04 [95% CI, 2.00-8.15]; P < .001), spinal cord lesions (HR, 5.11 [95% CI,]; P = .001), and gadolinium-enhancing lesions on index scan (HR, 2.09 [95% CI, 1.13-3.87]; P = .02) were independently associated with an increased risk of conversion to MS. Having 2 factors at the time of the index MRI scan was associated with a risk of 27.9% (95% CI, 13.5%-39.9%) of a seminal event within 2 years, increasing to 90.9% (95% CI, 41.1%-98.6%) for individuals with all 3 factors (3 risk factors vs none: HR, 23.34 [95% CI, 9.08-59.96]; P < .001). Overall, with 80% power to detect an effect size of 60% within 24 months, a total of 160 individuals with RIS were needed assuming an event rate of 20%. (continued) Key Points Question Are there clinical or demographic factors associated with time to clinical symptoms of multiple sclerosis among patients with radiologically isolated syndrome? Findings In this cohort study of 372 individuals with radiologically isolated syndrome, young age, the presence of spinal cord lesions, and gadoliniumenhancing lesions on the index magnetic resonance imaging scan were associated with increased risk of onset of clinical symptoms of multiple sclerosis. Meaning Thes...
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis. Vacuolar protein sorting 34 (VPS34) is a member of the phosphatidylinositol-3-kinase lipid kinase family that controls the canonical autophagy pathway and vesicular trafficking. Using a recently developed specific inhibitor (VPS34-IN1), we found that VPS34 inhibition induces apoptosis in AML cells but not in normal CD34+ hematopoietic cells. Complete and acute inhibition of VPS34 was required for the antileukemic activity of VPS34-IN1. This inhibitor also has pleiotropic effects against various cellular functions related to class III PI3K in AML cells that may explain their survival impairment. VPS34-IN1 inhibits basal and l-asparaginase-induced autophagy in AML cells. A synergistic cell death activity of this drug was also demonstrated. VPS34-IN1 was additionally found to impair vesicular trafficking and mTORC1 signaling. From an unbiased approach based on phosphoproteomic analysis, we identified that VPS34-IN1 specifically inhibits STAT5 phosphorylation downstream of FLT3-ITD signaling in AML. The identification of the mechanisms controlling FLT3-ITD signaling by VPS34 represents an important insight into the oncogenesis of AML and could lead to new therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.