The major hurdle for cancer vaccines to be effective is posed by tumor immune evasion. Several common immune mechanisms and mediators are exploited by tumors to avoid immune destruction. In an attempt to shed more light on the immunosuppressive environment in uterine tumors, we analyzed the presence of PD-L1, PD-L2, B7-H4, indoleamine 2,3-dioxygenase (IDO), galectin-1, galectin-3, arginase-1 activity and myeloid-derived suppressor cell (MDSC) infiltration. IDO, PD-L1, PD-L2 and B7-H4 were analyzed by immunohistochemistry. PD-L2 was mostly expressed at low levels in these tumors. We found high IDO expression in 21 % of endometrial carcinoma samples and in 14 % of uterine sarcoma samples. For PD-L1 and B7-H4, we found high expression in 92 and 90 % of endometrial cancers, respectively, and in 100 and 92 % of the sarcomas. Galectin-1 and 3 were analyzed in tissue lysates by ELISA, but we did not find an increase in both molecules in tumor lysates compared with benign tissues. We detected expression of galectin-3 by fibroblasts, immune cells and tumor cells in single-cell tumor suspensions. In addition, we noted a highly significant increase in arginase-1 activity in endometrial carcinomas compared with normal endometria, which was not the case for uterine sarcomas. Finally, we could demonstrate MDSC infiltration in fresh tumor suspensions from uterine tumors. These results indicate that the PD-1/PD-L1 interaction and B7-H4 could be possible targets for immune intervention in uterine cancer patients as well as mediation of MDSC function. These observations are another step toward the implementation of inhibitors of immunosuppression in the treatment of uterine cancer patients.Electronic supplementary materialThe online version of this article (doi:10.1007/s00262-014-1537-8) contains supplementary material, which is available to authorized users.
Uterine sarcomas are rare and heterogeneous tumors characterized by an aggressive clinical behavior. Their high rates of recurrence and mortality point to the urgent need for novel targeted therapies and alternative treatment strategies. However, no molecular prognostic or predictive biomarkers are available so far to guide choice and modality of treatment. We investigated the expression of several druggable targets (phospho-S6 ribosomal protein, PTEN, PDGFR-α, ERBB2, and EGFR) in a large cohort of human uterine sarcoma samples (288), including leiomyosarcomas, low-grade and high-grade endometrial stromal sarcomas, undifferentiated uterine sarcomas, and adenosarcomas, together with 15 smooth muscle tumors of uncertain malignant potential (STUMP), 52 benign uterine stromal tumors, and 41 normal uterine tissues. The potential therapeutic value of the most promising target, p-S6, was tested in patient-derived xenograft (PDX) leiomyosarcoma models. In uterine sarcomas and STUMPs, S6 phosphorylation (reflecting mTOR pathway activation) was associated with higher grade ( = 0.001) and recurrence ( = 0.019), as shown by logistic regression. In addition, p-S6 correlated with shorter progression-free survival ( = 0.034). Treatment with a dual PI3K/mTOR inhibitor significantly reduced tumor growth in 4 of 5 leiomyosarcoma PDX models (with tumor shrinkage in 2 models). Remarkably, the 4 responding models showed basal p-S6 expression, whereas the nonresponding model was scored as negative, suggesting a role for p-S6 in response prediction to PI3K/mTOR inhibition. Dual PI3K/mTOR inhibition represents an effective therapeutic strategy in uterine leiomyosarcoma, and p-S6 expression is a potential predictive biomarker for response to treatment. .
WT1 is overexpressed in uterine sarcomas. Since increased levels of mRNA determine the biological role, WT1 might contribute to uterine sarcoma tumour biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.