A chicken clathrin-associated adaptor protein 3-δ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor κB (NFκB) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.
Nucleoporin 210 (Nup210) is associated with several physiological processes including muscle and neural cell differentiation, autoimmune diseases, and peripheral T cell homeostasis. Chicken Nup210 (chNup210) gene was originally identified as one of the differentially expressed genes (DEGs) in the kidney tissues of chicken. To elucidate the role of Nup210 in metabolic disease of chicken, we studied the molecular characteristics of chNup210 and analyzed its gene expression under the stimulation of Toll-like receptor 3 (TLR3) ligands. The Nup210 genomic DNA and amino acid sequences of various species including fowls, fishes, and mammals were retrieved from the Ensemble database and subjected to bioinformatics analyses. The expression of Nup210 from several chicken tissues was probed through qRT-PCR, and chicken fibroblast DF-1 cell line was used to determine the change in expression of chNup210 after stimulation with TLR3 ligand, polyinosinicpolycytidylic acid (poly (I:C)). The chNup210 gene was highly expressed in chicken lung and spleen tissues. Although highly conserved among the species, chNup210 was evolutionary clustered in the same clade as that of duck compared to other mammals. Furthermore, this study revealed that chNup210 is expressed in TLR3 signaling pathway and provides fundamental information on Nup210 expression in chicken. Future studies that offer insight into the involvement of chNup210 in the chicken innate immune response against viral infection are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.