OBJECTIVETo describe the prevalence of biochemical B12 deficiency in adults with type 2 diabetes taking metformin compared with those not taking metformin and those without diabetes, and explore whether this relationship is modified by vitamin B12 supplements.RESEARCH DESIGN AND METHODSAnalysis of data on U.S. adults ≥50 years of age with (n = 1,621) or without type 2 diabetes (n = 6,867) from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Type 2 diabetes was defined as clinical diagnosis after age 30 without initiation of insulin therapy within 1 year. Those with diabetes were classified according to their current metformin use. Biochemical B12 deficiency was defined as serum B12 concentrations ≤148 pmol/L and borderline deficiency was defined as >148 to ≤221 pmol/L.RESULTSBiochemical B12 deficiency was present in 5.8% of those with diabetes using metformin compared with 2.4% of those not using metformin (P = 0.0026) and 3.3% of those without diabetes (P = 0.0002). Among those with diabetes, metformin use was associated with biochemical B12 deficiency (adjusted odds ratio 2.92; 95% CI 1.26–6.78). Consumption of any supplement containing B12 was not associated with a reduction in the prevalence of biochemical B12 deficiency among those with diabetes, whereas consumption of any supplement containing B12 was associated with a two-thirds reduction among those without diabetes.CONCLUSIONSMetformin therapy is associated with a higher prevalence of biochemical B12 deficiency. The amount of B12 recommended by the Institute of Medicine (IOM) (2.4 μg/day) and the amount available in general multivitamins (6 μg) may not be enough to correct this deficiency among those with diabetes.
Persons with a thermolabile form of the enzyme 5,10 methylenetetrahydrofolate reductase (MTHFR) have reduced enzyme activity and increased plasma homocysteine which can be lowered by supplemental folic acid. Thermolability of the enzyme has recently been shown to be caused by a common mutation (677C→T) in the MTHFR gene. We studied 41 fibroblast cultures from NTD‐affected fetuses and compared their genotypes with those of 109 blood specimens from individuals in the general population. 677C→T homozygosity was associated with a 7.2 fold increased risk for NTDs (95% confidence interval: 1.8–30.3; p value: 0.001). These preliminary data suggest that the 677C→T polymorphism of the MTHFR gene is a risk factor for spina bifida and anencephaly that may provide a partial biologic explanation for why folic acid prevents these types of NTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.