BACKGROUND-Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.
Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.
We report a recurrent microdeletion syndrome causing mental retardation, epilepsy and variable facial and digital dysmorphisms. We describe nine affected individuals, including six probands: two with de novo deletions, two who inherited the deletion from an affected parent and two with unknown inheritance. The proximal breakpoint of the largest deletion is contiguous with breakpoint 3 (BP3) of the Prader-Willi and Angelman syndrome region, extending 3.95 Mb distally to BP5. A smaller 1.5-Mb deletion has a proximal breakpoint within the larger deletion (BP4) and shares the same distal BP5. This recurrent 1.5-Mb deletion contains six genes, including a candidate gene for epilepsy (CHRNA7) that is probably responsible for the observed seizure phenotype. The BP4-BP5 region undergoes frequent inversion, suggesting a possible link between this inversion polymorphism and recurrent deletion. The frequency of these microdeletions in mental retardation cases is approximately 0.3% (6/2,082 tested), a prevalence comparable to that of Williams, Angelman and Prader-Willi syndromes.
Allan-Herndon-Dudley syndrome was among the first of the X-linked mental retardation syndromes to be described (in 1944) and among the first to be regionally mapped on the X chromosome (in 1990). Six large families with the syndrome have been identified, and linkage studies have placed the gene locus in Xq13.2. Mutations in the monocarboxylate transporter 8 gene (MCT8) have been found in each of the six families. One essential function of the protein encoded by this gene appears to be the transport of triiodothyronine into neurons. Abnormal transporter function is reflected in elevated free triiodothyronine and lowered free thyroxine levels in the blood. Infancy and childhood in the Allan-Herndon-Dudley syndrome are marked by hypotonia, weakness, reduced muscle mass, and delay of developmental milestones. Facial manifestations are not distinctive, but the face tends to be elongated with bifrontal narrowing, and the ears are often simply formed or cupped. Some patients have myopathic facies. Generalized weakness is manifested by excessive drooling, forward positioning of the head and neck, failure to ambulate independently, or ataxia in those who do ambulate. Speech is dysarthric or absent altogether. Hypotonia gives way in adult life to spasticity. The hands exhibit dystonic and athetoid posturing and fisting. Cognitive development is severely impaired. No major malformations occur, intrauterine growth is not impaired, and head circumference and genital development are usually normal. Behavior tends to be passive, with little evidence of aggressive or disruptive behavior. Although clinical signs of thyroid dysfunction are usually absent in affected males, the disturbances in blood levels of thyroid hormones suggest the possibility of systematic detection through screening of high-risk populations.
Nonsense-mediated mRNA decay (NMD) is of universal biological significance1-3. It has emerged as an important global RNA, DNA and translation regulatory pathway4. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype5,6 and one with the FG phenotype7. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery8,9. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.