Autism Genes, Again and Again
Despite recent advances in sequencing technologies and their lowered costs—effective, highly sensitive, and specific sequencing of multiple genes of interest from large cohorts remains expensive.
O'Roak
et al.
(p.
1619
; published online 15 November) modified molecular inversion probe methods for target-specific capture and sequencing to resequence candidate genes in thousands of patients. The technique was applied to 44 candidate genes to identify de novo mutations in a large cohort of individuals with and without autism spectrum disorder. The analysis revealed several de novo mutations in genes that together contribute to 1% of sporadic autism spectrum disorders, supporting the notion that multiple genes underlie autism-spectrum disorders.
We demonstrate the successful application of exome sequencing1–3 to discover a gene for an autosomal dominant disorder, Kabuki syndrome (OMIM %147920). The exomes of ten unrelated probands were subjected to massively parallel sequencing. After filtering against SNP databases, there was no compelling candidate gene containing novel variants in all affected individuals. Less stringent filtering criteria permitted modest genetic heterogeneity or missing data, but identified multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, a Trithorax-group histone methyltransferase4, in which seven probands had novel nonsense or frameshift mutations. Follow-up Sanger sequencing detected MLL2 mutations in two of the three remaining cases, and in 26 of 43 additional cases. In families where parental DNA was available, the mutation was confirmed to be de novo (n = 12) or transmitted (n = 2) in concordance with phenotype. Our results strongly suggest that mutations in MLL2 are a major cause of Kabuki syndrome.
New technologies enabling genome-wide interrogation have led to a large and rapidly growing number of autism spectrum disorder (ASD) candidate genes. Although encouraging, the volume and complexity of these data make it challenging for scientists, particularly non-geneticists, to comprehensively evaluate available evidence for individual genes. Described here is the Gene Scoring module within SFARI Gene 2.0 (https://gene.sfari.org/autdb/GS_Home.do), a platform developed to enable systematic community driven assessment of genetic evidence for individual genes with regard to ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.