Inversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints. Using combined literature, sequence and experimental analyses, we validated 112 of the structural variants, including several that are of biomedical relevance. These data provide a fine-scale structural variation map of the human genome and the requisite sequence precision for subsequent genetic studies of human disease.
The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders.
BACKGROUND-Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.
We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10 −8 ). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.Idiopathic generalized epilepsies (IGE) are common seizure disorders accounting for up to one-third of all epilepsies 1 . The vast majority of individuals with IGE have a complex genetic etiology2, for which the underlying genetic alterations remain largely unknown. Recently, a 15q13.3 microdeletion syndrome has been identified in 0.2-0.3% of individuals Correspondence should be addressed to T.S. (sandert@uni-koeln.de). Note: Supplementary information is available on the Nature Genetics website. AUTHOR CONTRIBUTIONST.S. and E.E.E. initiated and designed the study; I.H., H.M., S.v.S., I.S., A.A.K.-L., V.G., B.S., K.M.K., P.S.R., F.R., Y.W., H.L., F.Z., L.U., K.F., M. Feucht, F.V., G.-J.d.H., R.S.M., H.H., D. Luciano, C.R., D. Lindhout, C.E.E., U.S. and T.S. recruited and phenotyped the EPICURE sample; H.C.M., A.J.S., M.G., M. Fichera, C.B., P.G., P.T., A.M. and E.E.E. recruited and phenotyped the mixed IGE sample; A.F., M.W., M.N. and S.S. recruited and phenotyped the PopGen control sample; I.H., A.F., C.L., K.L.K., I.S., M.W., M.N., P.N. and T.S. performed the CNV analysis on SNP arrays; H.C.M., A.J.S., M. Fichera, C.B. and D. Luciano performed the qPCR screening; H.C.M., M. Fichera, C.B. and D. Luciano performed the screening using Illumina Genotyping BeadChips; H.C.M., A.J.S. and C.B. performed the confirmation using NimbleGen arrays; C.d.K., B.P.C.K. and D. Lindhout performed the confirmation using Illumina CNV BeadChips; I.H., H.C.M., A.J.S., M.G., M. Fichera, A.F., C.d.K., K.L.K., C.R., B.P.C.K., D. Lindhout, E.E.E. and T.S. coordinated the work and prepared the manuscript. Susceptibility loci for common idiopathic epilepsies, comprising benign epilepsy of childhood with centrotemporal spikes7 and common IGE syndromes8 ,9 , have also been mapped to the 15q13-q14 region. To test whether the 15q13.3 deletion increases risk of common epilepsies, we screened for structural variants within the 15q13.3 region in two independent samples of individuals with IGE and ancestrally matched controls. The first sample comprised 647 unrelated IGE cases of Western European ancestry (EPICURE sample) and 1,202 German controls (PopGen) genotyped using the Affymetrix GenomeWide Human SNP array 6.0. We identified the 15q13.3 microdeletion in 7 of 647 IGE cases ( Supplementary Fig. 1 online) with different IGE syndromes ( Supplementary Fig. 2 online). Thus, our results suggest that the 15q13.3 deletion only, and not the reciprocal duplication, represents a major risk factor for IGE. NIH Public AccessIn our stu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.