We report a recurrent microdeletion syndrome causing mental retardation, epilepsy and variable facial and digital dysmorphisms. We describe nine affected individuals, including six probands: two with de novo deletions, two who inherited the deletion from an affected parent and two with unknown inheritance. The proximal breakpoint of the largest deletion is contiguous with breakpoint 3 (BP3) of the Prader-Willi and Angelman syndrome region, extending 3.95 Mb distally to BP5. A smaller 1.5-Mb deletion has a proximal breakpoint within the larger deletion (BP4) and shares the same distal BP5. This recurrent 1.5-Mb deletion contains six genes, including a candidate gene for epilepsy (CHRNA7) that is probably responsible for the observed seizure phenotype. The BP4-BP5 region undergoes frequent inversion, suggesting a possible link between this inversion polymorphism and recurrent deletion. The frequency of these microdeletions in mental retardation cases is approximately 0.3% (6/2,082 tested), a prevalence comparable to that of Williams, Angelman and Prader-Willi syndromes.
Background: In recent years, the maturation of microarray technology has allowed the genomewide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues.
Objective
To quantify the comparative risk of thrombosis with thrombocytopenia syndrome or thromboembolic events associated with use of adenovirus based covid-19 vaccines versus mRNA based covid-19 vaccines.
Design
International network cohort study.
Setting
Routinely collected health data from contributing datasets in France, Germany, the Netherlands, Spain, the UK, and the US.
Participants
Adults (age ≥18 years) registered at any contributing database and who received at least one dose of a covid-19 vaccine (ChAdOx1-S (Oxford-AstraZeneca), BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), or Ad26.COV2.S (Janssen/Johnson & Johnson)), from December 2020 to mid-2021.
Main outcome measures
Thrombosis with thrombocytopenia syndrome or venous or arterial thromboembolic events within the 28 days after covid-19 vaccination. Incidence rate ratios were estimated after propensity scores matching and were calibrated using negative control outcomes. Estimates specific to the database were pooled by use of random effects meta-analyses.
Results
Overall, 1 332 719 of 3 829 822 first dose ChAdOx1-S recipients were matched to 2 124 339 of 2 149 679 BNT162b2 recipients from Germany and the UK. Additionally, 762 517 of 772 678 people receiving Ad26.COV2.S were matched to 2 851 976 of 7 606 693 receiving BNT162b2 in Germany, Spain, and the US. All 628 164 Ad26.COV2.S recipients from the US were matched to 2 230 157 of 3 923 371 mRNA-1273 recipients. A total of 862 thrombocytopenia events were observed in the matched first dose ChAdOx1-S recipients from Germany and the UK, and 520 events after a first dose of BNT162b2. Comparing ChAdOx1-S with a first dose of BNT162b2 revealed an increased risk of thrombocytopenia (pooled calibrated incidence rate ratio 1.33 (95% confidence interval 1.18 to 1.50) and calibrated incidence rate difference of 1.18 (0.57 to 1.8) per 1000 person years). Additionally, a pooled calibrated incidence rate ratio of 2.26 (0.93 to 5.52) for venous thrombosis with thrombocytopenia syndrome was seen with Ad26.COV2.S compared with BNT162b2.
Conclusions
In this multinational study, a pooled 30% increased risk of thrombocytopenia after a first dose of the ChAdOx1-S vaccine was observed, as was a trend towards an increased risk of venous thrombosis with thrombocytopenia syndrome after Ad26.COV2.S compared with BNT162b2. Although rare, the observed risks after adenovirus based vaccines should be considered when planning further immunisation campaigns and future vaccine development.
Copy number variations are important polymorphisms that can influence the expression of genes within and close to the rearranged region. This allows transcription levels to be higher or lower than those that can be achieved by control of transcription of a single copy. Recently, copy number variations have been associated with genetic diseases such as cancer, immune diseases, and neurological disorders. TaqMan copy number assays are designed to detect and measure copy number variation in the human genome using real-time polymerase chain reaction and unquenching of fluorescent probes for the target sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.