It has been recently observed that Software Defined Networks (SDN) can change the paths of different connections in the network at a relatively frequent pace to improve the overall network performance, including delay and packet loss, or to respond to other needs such as security. These changes mean that a network that SDN controls will seldom operate in steady state; rather, the network may often be in transient mode, especially when the network is heavily loaded and path changes are critically important. Hence, we propose a transient analysis of such networks to better understand how frequent changes in paths and the switches’ workloads may affect multi-hop networks’ performance. Since conventional queueing models are difficult to solve for transient behaviour and simulations take excessive computation time due to the need for statistical accuracy, we use a diffusion approximation to study a multi-hop network controlled by SDN. The results show that network optimization should consider the transient effects of SDN and that transients need to be included in the design of algorithms for SDN controllers that optimize network performance.
No abstract
The Internet of Things is paving the way for the transition into the fourth industrial revolution with the mad rush of connecting physical devices and systems to the internet. IoT is a promising technology to drive the agricultural industry, which is the backbone for sustainable development especially in developing countries like those in Africa that are experiencing rapid population growth, stressed natural resources, reduced agricultural productivity due to climate change, and massive food wastage. In this paper, we assessed challenges in the adoption of IoT in developing countries in agriculture. We propose a cost effective, energy efficient, secure, reliable and heterogeneous (independent of the IoT protocol) three layer architecture for IoT driven agriculture. The first layer consists of IoT devices and it is made up of IoT driven agriculture systems such as smart poultry, smart irrigation, theft detection, pest detection, crop monitoring, food preservation, and food supply chain systems. The IoT devices are connected to the gateways by low power LoRaWAN network. The gateways and local processing servers co-located with the gateways create the second layer. The cloud layer is the third layer, which exploits the open source FIWARE platform to provide a set of public and free-to-use API specifications that come along with open source reference implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.