In this paper, we study strong convergence of some proximal-type algorithms to a solution of split minimization problem in complete p-uniformly convex metric spaces. We also analyse asymptotic behaviour of the sequence generated by Halpern-type proximal point algorithm and extend it to approximate a common solution of a finite family of minimization problems in the setting of complete p-uniformly convex metric spaces. Furthermore, numerical experiments of our algorithms in comparison with other algorithms are given to show the applicability of our results.
In this paper, we introduce and study the class of demimetric mappings in CAT(0) spaces.We then propose a modified proximal point algorithm for approximating a common solution of a finite family of minimization problems and fixed point problems in CAT(0) spaces. Furthermore,we establish strong convergence of the proposed algorithm to a common solution of a finite family of minimization problems and fixed point problems for a finite family of demimetric mappings in complete CAT(0) spaces. A numerical example which illustrates the applicability of our proposed algorithm is also given. Our results improve and extend some recent results in the literature.
In this paper, we introduce a new iterative scheme by a hybrid method and prove a strong convergence theorem of a common element in the set of fixed points of a finite family of closed quasi-Bregman strictly pseudocontractive mappings and common solutions to a system of equilibrium problems in reflexive Banach space. Our results extend important recent results announced by many authors. MSC: 47H09; 47J25
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.