A linear model is often used to find the effect of a binary treatment [Formula: see text] on a noncontinuous outcome [Formula: see text] with covariates [Formula: see text]. Particularly, a binary [Formula: see text] gives the popular “linear probability model (LPM),” but the linear model is untenable if [Formula: see text] contains a continuous regressor. This raises the question: what kind of treatment effect does the ordinary least squares estimator (OLS) to LPM estimate? This article shows that the OLS estimates a weighted average of the [Formula: see text]-conditional heterogeneous effect plus a bias. Under the condition that [Formula: see text] is equal to the linear projection of [Formula: see text] on [Formula: see text], the bias becomes zero, and the OLS estimates the “overlap-weighted average” of the [Formula: see text]-conditional effect. Although the condition does not hold in general, specifying the [Formula: see text]-part of the LPM such that the [Formula: see text]-part predicts [Formula: see text] well, not [Formula: see text], minimizes the bias counter-intuitively. This article also shows how to estimate the overlap-weighted average without the condition by using the “propensity-score residual” [Formula: see text]. An empirical analysis demonstrates our points.
Regression discontinuity is popular in finding treatment/policy effects when the treatment is determined by a continuous variable crossing a cutoff. Typically, a local linear regression (LLR) estimator is used to find the effects. For binary response, however, LLR is not suitable in extrapolating the treatment, as in doubling/tripling the treatment dose/intensity. The reason is that doubling/tripling the LLR estimate can give a number out of the bound [Formula: see text], despite that the effect should be a change in probability. We propose local maximum likelihood estimators which overcome these shortcomings, while giving almost the same estimates as the LLR estimator does for the original treatment. A simulation study and an empirical analysis for effects of an income subsidy program on religion demonstrate these points.
When a binary treatment D D is possibly endogenous, a binary instrument δ \delta is often used to identify the “effect on compliers.” If covariates X X affect both D D and an outcome Y Y , X X should be controlled to identify the “ X X -conditional complier effect.” However, its nonparametric estimation leads to the well-known dimension problem. To avoid this problem while capturing the effect heterogeneity, we identify the complier effect heterogeneous with respect to only the one-dimensional “instrument score” E ( δ ∣ X ) E\left(\delta | X) for non-randomized δ \delta . This effect heterogeneity is minimal, in the sense that any other “balancing score” is finer than the instrument score. We establish two critical “reduced-form models” that are linear in D D or δ \delta , even though no parametric assumption is imposed. The models hold for any form of Y Y (continuous, binary, count, …). The desired effect is then estimated using either single index model estimators or an instrumental variable estimator after applying a power approximation to the effect. Simulation and empirical studies are performed to illustrate the proposed approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.