Using the technique of fluorescence piezospectroscopy, we determine the distribution of thermal residual stresses across the edges of three laminated aluminafzirconia composites. We develop a methodology for separating the measured stress state into microstresses that result from grain-to-grain thermal mismatch and macrostresses that result from lamination-induced thermal mismatch between individual plies. Comparison between the measured edgestress distributions and those calculated based on a simple force-superposition model shows good agreement, indicating that the laminate system is well approximated as linear elastic. Given the experimental confirmation of significant edge stresses in multi-ply laminates, the possibility of failure initiating at composite edges must be considered in the design of surface-compressed laminate structures with the aim of mediating the detrimental effect of surface flaws.
Symmetric structures of laminated ceramic composites were produced by superimposing alternating layers of Al2O3 and Al2O3/ZrO2 composite prepared by tape casting. The composites were designed to have an alumina surface layer on either side. This configuration caused residual compressive stresses to be induced on the surface due to the different thermal expansion coefficients of the various layers, leading to an increase in the apparent surface toughness. The amount of residual stress was determined using the indentation technique. The tribological behavior of these laminated structures was evaluated using the pin‐on‐disk method for different loads and sliding speeds. Comparison with the results obtained from stress‐free alumina showed that, within the range of these experimental conditions, the improvement in surface toughness leads to a reduced friction coefficient and increased wear resistance of the composites. Possible wear mechanisms are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.