The Etna volcano is located in an apparently anomalous position on the hinge zone of the Apennines subduction and its Na‐alkaline geochemistry does not favour a magma source from the deep slab as indicated for the Aeolian K‐alkaline magmatism. The steeper dip of the regional foreland monocline at the front of the Apennines in the Ionian Sea than in Sicily, implies a larger rollback of the subduction hinge in the Ionian Sea. Moreover, the lengthening of the Apennines arc needs extension parallel to the arc. Therefore, the larger southeastward subduction rollback of the Ionian lithosphere with respect to the Hyblean plateau in Sicily, should kinematically produce right‐lateral transtension and a sort of vertical ‘slab window’ which might explain (i) the Plio‐Pleistocene alkaline magmatism of eastern Sicily (e.g. the Etna volcano) and (ii) the late Pliocene to present right lateral transtensional tectonics and seismicity of eastern Sicily. The area of transfer of different dip and rollback occurs along the inherited Mesozoic passive continental margin between Sicily and the oceanic Ionian Sea, i.e. the Malta escarpment.
Jurassic-Cretaceous syn- and postrift successions from the central Apennines were backstripped to gain information on the Mesozoic evolution of the passive margin of the Adriatic Plate. Early Jurassic rifting led to the development of a horst-and-graben paleogeography (the Latium-Abruzzi Carbonate Platform and the Sabina-Umbria-Marche Pelagic Basin). Subsidence curves were built for both carbonate platform and pelagic-basin domains from original and literature stratigraphic data. The paleodepositional depths of the deepwater sediments were reconstructed from field geology data, including new paleontological data. It is proposed that after the deposition of lower Hettangian shallow-water carbonates, an abrupt increase in paleowater depth, to 600-1000 m, occurred during the late Hettangian-Sinemurian synrift stage. The postrift stage was characterized by basin filling, with decreasing paleowater depths during the Jurassic, and by a new deepening during the Cretaceous. Our backstripping curves show, for the Sabina-Umbria-Marche Basin, a short period (<5 m.yr.) of rapid tectonic subsidence at the beginning of the Jurassic, followed by very slow (likely thermally controlled) or absent tectonic subsidence until the Cretaceous. The slight increase in subsidence observed from Cenomanian time is linked to a renewal of extensional tectonics. The Latium-Abruzzi Carbonate Platform shows variable subsidence rates in both place and time. Fast subsidence occurred in the Rhaetian-Hettangian, Toarcian, Berriasian, and Cenomanian and is linked with extensional or transtensional tectonic events. After the Early Jurassic rifting, subsidence rates (on average 30-40 m/m.yr.) affecting the Latium-Abruzzi Carbonate Platform were faster than those recorded by the Sabina-Umbria-Marche Basin. Faster postrift subsidence in carbonate platform areas is a geological paradox that is here explained by the lateral flow of upper Triassic evaporites toward the deepwater domains, as a result of higher sedimentary loading in the carbonate platform areas and the onset of a pressure gradient toward the pelagic basin at the depth of the evaporites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.