We study a new approach to determine the asymptotic behaviour of quantum many-particle systems near coalescence points of particles which interact via singular Coulomb potentials. This problem is of fundamental interest in electronic structure theory in order to establish accurate and efficient models for numerical simulations. Within our approach, coalescence points of particles are treated as embedded geometric singularities in the configuration space of electrons. Based on a general singular pseudo-differential calculus, we provide a recursive scheme for the calculation of the parametrix and corresponding Green operator of a nonrelativistic Hamiltonian. In our singular calculus, the Green operator encodes all the asymptotic information of the eigenfunctions. Explicit calculations and an asymptotic representation for the Green operator of the hydrogen atom and isoelectronic ions are presented.
We study operators on a singular manifold, here of conical or edge type, and develop a new general approach of representing asymptotics of solutions to elliptic equations close to the singularities. The idea is to construct so-called asymptotic parametrices with flat left-over terms. Our structures are motivated by models of particle physics with singular potentials that contribute embedded singularities in R N of higher order, according to the number of particles.2000 Mathematics Subject Classification. Primary 35S35; Secondary 35J70. Key words and phrases. cone and edge pseudo-differential operators, ellipticity of edgedegenerate operators, meromorphic operator-valued symbols, asymptotics of solutions.
The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to shortrange correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.