This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Laser cooling and trapping of lanthanides has opened the possibility to carry out new experiments with ultracold dipolar gases, for example for quantum simulation of solid state physics. To identify new suitable candidates for laser-cooling, it is important to have a precise spectroscopic knowledge of the atom under consideration. Along this direction, we present here a detailed modeling of the energy levels of neutral neodymium (Nd), an element belonging to the left part of the lanthanide row, which has not yet been considered for laser-cooling. Using the semi-empirical method implemented in the Cowan suite of codes, we are in particular able to interpret more than 200 experimental levels of the NIST database belonging to both parities. The optimal set of atomic parameters obtained after the least-square fitting step can serve to calculate radiative transition probabilities in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.