Lysine-specific demethylase 1 (LSD1) regulates gene expression by affecting histone modifications and is a promising target for acute myeloid leukemia (AML) with specific genetic abnormalities. Novel LSD1 inhibitors, NCD25 and NCD38, inhibited growth of MLL-AF9 leukemia as well as erythroleukemia, megakaryoblastic leukemia and myelodysplastic syndromes (MDSs) overt leukemia cells in the concentration range that normal hematopoiesis was spared. NCD25 and NCD38 invoked the myeloid development programs, hindered the MDS and AML oncogenic programs, and commonly upregulated 62 genes in several leukemia cells. NCD38 elevated H3K27ac level on enhancers of these LSD1 signature genes and newly activated ~500 super-enhancers. Upregulated genes with super-enhancer activation in erythroleukemia cells were enriched in leukocyte differentiation. Eleven genes including GFI1 and ERG, but not CEBPA, were identified as the LSD1 signature with super-enhancer activation. Super-enhancers of these genes were activated prior to induction of the transcripts and myeloid differentiation. Depletion of GFI1 attenuated myeloid differentiation by NCD38. Finally, a single administration of NCD38 causes the in vivo eradication of primary MDS-related leukemia cells with a complex karyotype. Together, NCD38 derepresses super-enhancers of hematopoietic regulators that are silenced abnormally by LSD1, attenuates leukemogenic programs and consequently exerts anti-leukemic effect against MDS-related leukemia with adverse outcome.
Lysine-specific demethylase 1 (LSD1) is a histone modifier for transcriptional repression involved in the regulation of hematopoiesis. We previously reported that a LSD1 inhibitor NCD38 induces transdifferentiation from erythroid lineage to granulomonocytic lineage and exerts anti-leukemia effect through de-repression of the specific super-enhancers of hematopoietic regulators including ERG in a human erythroleukemia cell line, HEL. However, the mechanistic basis for this specificity of NCD38 has remained unclear. Herein, we report major partners associated with LSD1 and clarify the mechanism in HEL cells. Proteome analysis identified 54 candidate proteins associated with LSD1, including several transcription factors such as GFI1B and RUNX1 as well as BRAF-histone deacetylase complex (BHC) components such as CoREST, HDAC1, and HDAC2. NCD38 selectively disrupted the interaction of LSD1 with GFI1B but not with RUNX1, CoREST, HDAC1 and HDAC2. Erg was downregulated in murine erythroid progenitors with prominent upregulation of Gfi1b. NCD38 induced ERG and attenuated an erythroid marker CD235a in HEL while this attenuation was mimicked by the lentiviral overexpression of ERG. The ERG super-enhancer contained the conserved binding motif of GFI1B and was actually occupied by GFI1B. NCD38 dissociated LSD1 and CoREST but not GFI1B from the ERG super-enhancer. Collectively, the selective separation of LSD1 from GFI1B by NCD38 restores the ERG super-enhancer activation and consequently upregulates ERG expression, inducing the transdifferentiation linked to the anti-leukemia effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.