Ewing sarcoma (ES) and peripheral primitive neuroectodermal tumors (PNETs) are associated with a chromosomal translocation resulting in a fusion of the amino-terminus of EWS with the DNA-binding domain of an ETS transcription factor (most commonly FLI1 or ERG). Although previous reports suggested that these chimera proteins would act as aberrant transcription factors, their downstream targets have not been fully elucidated. To identify downstream targets of these EWS-ETS fusion proteins, we introduced EWS-ETS fusion constructs into a human fibrosarcoma cell line, HT-1080, by retroviral transduction. Here we report that Tenascin-C (TNC) is induced to a significantly higher level in cells expressing EWS-ETSs than in cells expressing normal ETSs. Furthermore, through use of an antisense cDNA expression vector we show that expression of endogenous TNC mRNA and protein were reduced coordinately with attenuation of EWS-FLI1 fusion protein expression. A chromatin immunoprecipitation assay showed direct interaction between the TNC promoter and the EWS-FLI1 fusion protein in vivo. In addition, a luciferase reporter assay revealed that EWS-ETSs upregulated the TNC gene through four ETS binding sites in the TNC promoter. High levels of TNC expression were observed in a subset of ES cell lines (3 of 6) and primary tumors (4 of 6). Together with previous studies showing that TNC expression is involved in the invasive and malignant phenotype of several tumor types, our data suggest that the oncogenic effect of EWS-ETS may be mediated in part by upregulating of TNC expression.
Ewing family tumors (EFTs) are associated with a chromosomal translocation resulting in a fusion of the amino-terminus of EWS with the DNA-binding domain of an ETS transcription factor. Although previous reports suggested that these chimeric proteins would act as aberrant transcription factors, their downstream targets have not been fully elucidated. To identify downstream targets of these EWS-ETS fusion proteins, we introduced EWS-ETS fusion constructs into a human fibrosarcoma cell line, HT-1080, by retroviral transduction. Here we report that the LAMB3 gene encoding the beta3 chain of basement membrane protein laminin-5 is induced to a significantly higher level in cells expressing EWS-ETSs than in cells expressing normal ETSs. Additionally through use of an antisense oligonucleotide for EWS-ERG in the W-ES EFT cell line, laminin beta3 protein was reduced coordinately with EWS-ERG fusion protein expression. Furthermore, we found small mRNAs were preferentially transcribed from the LAMB3 gene in EFT cell lines. Molecular cloning of the entire coding region shows that the alternative transcripts from different promoter(s) located within the intron 14, which encode small proteins, likely are major products of the LAMB3 gene in EFT cells. We show that the small isoforms conferred increased anchorage-independent proliferation to NIH3T3 cells. Together with previous studies showing that laminin-5 is involved in the invasive and malignant phenotype of several tumor types, our data suggest that the oncogenic effect of EWS-ETS may be mediated in part by upregulation of LAMB3 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.