Naphthalene diimides 1–4 having different N,N-disubstitution undergo single electron reduction processes either chemically or electrochemically to yield the corresponding radical anion in high yield. This study concentrates on 1, bearing pentyl side chains connected through the diimide nitrogens, and compares the results obtained against those bearing isopropyl, propargyl, and phenylalanyl side chains. Compound 1 exhibits mirror image absorption and fluorescence in the near-UV region in CH2Cl2 and dimethylformamide that is typical of monomeric N,N-dialkyl-substituted naphthalene diimides. In toluene, excimer-like emission is observed, which suggests ground-state complexes involving 1 are formed. X-Ray crystallography has been used to characterize 1 in the solid state. Cyclic voltammetry enables the reversible potentials for [NDI]0/– and [NDI]−/2– type processes to be measured. Bulk one-electron reduction of 1–4 is characterized by dramatic changes in the absorption and emission spectra. Additionally, highly structured EPR (electron paramagnetic resonance) signals from dimethylformamide solutions of the radical anions of 1–3 have been obtained and are consistent with coupling between the unpaired electron and the naphthalene diimide nitrogens and hydrogens and the NCH hydrogens of the appropriate side chains. The overall structure of the EPR spectrum is substituent-dependent. These changes in spectroscopic output upon an electronic input may be described as a simple ‘on/off’ switching mechanism with which to apply a ‘bottom-up’ approach to molecular device manufacture.
Particle separation is an important but often neglected topic in undergraduate curricula. This article discusses how the method of gravitational field-flow fractionation (GrFFF) can be used to illustrate many principles of separation science and some fundamental concepts of physical chemistry. GrFFF separates particles during their elution through a flat rectangular channel. The mechanism can be readily understood in terms of gravitational settling, laminar fluid flow, and hydrodynamic lift forces. The article outlines material suitable for lecture and laboratory courses in analytical and physical chemistry. A tested laboratory experiment is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.