Due to excessive need for faster propagations of signals and necessity to reduce number of measurements and rapidly increase efficiency, new sensing theories have been proposed. Conventional sampling approaches that follow Shannon-Nyquist theorem require the sampling rate to be at least twice the maximum frequency of the signal. This has triggered scientists to examine the possibilities of creating a new path for recovering signals using much less samples and therefore speeding up the process and satisfying the need for faster realization. As a result the compressive sensing approach has emerged. This breakthrough makes signal processing and reconstruction much easier, not to mention that is has a vast variety of applications. In this paper some of the commonly used algorithms for sparse signal recovery are compared. The reconstruction accuracy, mean squared error and the execution time are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.