Abstract:The aim of this research was to investigate the possibility of a combined heat & power (CHP) plant, using the waste heat from a Suezmax-size oil tanker's main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC) system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG) when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship's power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.