Successful plan generation for autonomous systems is necessary but not sufficient to guarantee reaching a goal state by an execution of a plan. Various discrepancies between an expected state and the observed state may occur during the plan execution (e.g., due to failure of robot parts) and these discrepancies may lead to plan failures. For that reason, autonomous systems should be equipped with execution monitoring algorithms so that they can autonomously recover from such discrepancies.We introduce a plan execution monitoring algorithm that operates under partial observability. This algorithm relies on novel formal methods for hybrid prediction, diagnosis and explanation generation, and planning. The prediction module generates an expected state after the execution of a part of the plan from an incomplete state, to check for discrepancies. The diagnostic reasoning module generates meaningful hypotheses to explain failures of robot parts. Unlike the existing diagnosis methods, the previous hypotheses can be revised, based on new partial observations, increasing the accuracy of explanations as further information becomes available. The replanning module considers these explanations while computing a new plan that would avoid such failures. All these reasoning modules are hybrid in that they combine high-level logical reasoning with low-level feasibility checks based on probabilistic methods. We experimentally show that these hybrid reasoning modules improve the performance of plan execution monitoring in service robotics applications with multiple bimanual mobile robots.To evaluate the performance and to understand the applicability of the proposed execution monitoring algorithm, we introduce an execution simulation algorithm. This algorithm is based on a formal method that allows generation of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.