Machine learning approaches for medical decision-making processes are valuable when both high classification accuracy and less feature requirements are satisfied. Artificial neural networks (ANNs) successfully meet the first goal with its adaptive engine, while natureinspired algorithms are focusing on the feature selection (FS) process in order to eliminate less informative and less discriminant features. Besides engineering applications of ANN and FS algorithms, medical informatics is another emerging field using similar methods for medical data processing. Classification of psychiatric disorders is one of the major focus of medical informatics using artificial intelligence approaches. Being one of the most debilitating psychiatric diseases, bipolar disorder (BD) is frequently misdiagnosed as unipolar disorder (UD), leading to suboptimal treatment and poor outcomes. Thus, discriminating UD and BD at earlier stages of illness could therefore help to facilitate efficient and specific treatment. The use of quantitative electroencephalography (EEG) cordance as a biomarker has greatly enhanced the clinical utility of EEG in psychiatric and neurological subjects. In this context, the paper puts forward a study using two-step hybridized methodology: particle swarm optimization (PSO) algorithm for FS process and ANN for training process. The noteworthy performance of ANN-PSO approach stated that it is possible to discriminate 31 bipolar and 58 unipolar subjects using selected features from alpha and theta frequency bands with 89.89 % overall classification accuracy.
ObjectiveThe combination of repetitive transcranial magnetic stimulation (rTMS), a non-pharmacological form of therapy for treating major depressive disorder (MDD), and electroencephalogram (EEG) is a valuable tool for investigating the functional connectivity in the brain. This study aims to explore whether pre-treating frontal quantitative EEG (QEEG) cordance is associated with response to rTMS treatment among MDD patients by using an artificial intelligence approach, artificial neural network (ANN).MethodsThe artificial neural network using pre-treatment cordance of frontal QEEG classification was carried out to identify responder or non-responder to rTMS treatment among 55 MDD subjects. The classification performance was evaluated using k-fold cross-validation.ResultsThe ANN classification identified responders to rTMS treatment with a sensitivity of 93.33%, and its overall accuracy reached to 89.09%. Area under Receiver Operating Characteristic (ROC) curve (AUC) value for responder detection using 6, 8 and 10 fold cross validation were 0.917, 0.823 and 0.894 respectively.ConclusionPotential utility of ANN approach method can be used as a clinical tool in administering rTMS therapy to a targeted group of subjects suffering from MDD. This methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this treatment process is initiated. It is worth using feature selection algorithms to raise the sensitivity and accuracy values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.