Malware is a significant threat that has grown with the spread of technology. This makes detecting malware a critical issue. Static and dynamic methods are widely used in the detection of malware. However, traditional static and dynamic malware detection methods may fall short in advanced malware detection. Data obtained through memory analysis can provide important insights into the behavior and patterns of malware. This is because malwares leave various traces on memories. For this reason, the memory analysis method is one of the issues that should be studied in malware detection. In this study, the use of memory data in malware detection is suggested. Malware detection was carried out by using various deep learning and machine learning approaches in a big data environment with memory data. This study was carried out with Pyspark on Apache Spark big data platform in Google Colaboratory. Experiments were performed on the balanced CIC-MalMem-2022 dataset. Binary classification was made using Random Forest, Decision Tree, Gradient Boosted Tree, Logistic Regression, Naive Bayes, Linear Vector Support Machine, Multilayer Perceptron, Deep Feed Forward Neural Network, and Long Short-Term Memory algorithms. The performances of the algorithms used have been compared. The results were evaluated using the Accuracy, F1-score, Precision, Recall, and AUC performance metrics. As a result, the most successful malware detection was obtained with the Logistic Regression algorithm, with an accuracy level of 99.97% in malware detection by memory analysis. Gradient Boosted Tree follows the Logistic Regression algorithm with 99.94% accuracy. The Naive Bayes algorithm showed the lowest performance in malware analysis with memory data, with an accuracy of 98.41%. In addition, many of the algorithms used have achieved very successful results. According to the results obtained, the data obtained from memory analysis is very useful in detecting malware. In addition, deep learning and machine learning approaches were trained with memory datasets and achieved very successful results in malware detection.
With the widespread use of mobile technologies and the Internet, traffic in mobile networks is increasing. This situation has made the classification of traffic an important element for data security and network management. However, encryption of traffic in modern networks makes it difficult to classify traffic with traditional methods. In this study, a unique deep learning-based classification model is proposed for the classification of encrypted mobile traffic data. The proposed model is a classification model called RFSE-GRU, which combines the Gated Recurrent Units (GRU) algorithm, feature selection and data balancing. The features that are more meaningful in the classification process are determined by selecting the features with the Random Forest algorithm. In addition, Synthetic Minority Oversampling Technique (SMOTE) oversampling algorithm and Edited Nearest Neighbor (ENN) undersampling algorithm were used together to reduce the negative impact of data imbalance on classification performance. The study was carried out on Apache Spark big data platform in Google Colab environment. In the study, ISCX VPN-Non VPN and UTMobileNet2021 datasets were used. Binary and multiclass classifications were made for the ISCX VPN-Non VPN dataset, and multiclass classifications were made for the UTMobileNet2021 dataset by using various algorithms on the datasets. The proposed model has been compared with eleven different algorithms and hybrid methods. At the same time, the effect of data balancing and feature selection on classification performance is examined. As a result, the proposed model achieved 93.91%, 82.68% and 96.83% accuracy rates in ISCX VPN-Non VPN binary and multiclass, UTMobileNet2021 multiclass classifications, respectively.
Abstract:The main purpose of this study is to determine the amount of time-dependent learning of "solving problems that require establishing of single variable equations of the first order" of the seventh grade students. The study, adopting the screening model, consisted of a total of 84 students, including 42 female and 42 male students at the seventh grade. Data was collected using an assessment tool consisting of 10 open-ended questions. The findings show that the learning group of 84 students were behind the value closest to the full learning level by a score of 0.013. While the female students reached the lower limit of 0.987 specified for the full learning level in a period of 3.2 course hours, the male students reached this limit in 4.0 course hours. The learning amount of 0.999, which is the closest value to the full learning level, was reached by the learning group in a period of 9.7 course hours, the female students in 8.5 course hours, and the male students in 11.3 course hours. In addition to this, the data obtained showed that learning difficulties among to the learning groups decreased as the space below the curve of time and learning amount decreased. As a result of the study, it was recommended that it is possible to determine the closest course periods for the full learning level for each of the gains found in all levels of education and all teaching programmes, which define certain learning outcomes within a certain time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.