COVID-19 pandemic has become a concern of every nation, and it is crucial to apply an estimation model with a favorably-high accuracy to provide an accurate perspective of the situation. In this study, three explicit mathematical prediction models were applied to forecast the COVID-19 outbreak in Iran and Turkey. These models include a recursive-based method, Boltzmann Function-based model and Beesham’s prediction model. These models were exploited to analyze the confirmed and death cases of the first 106 and 87 days of the COVID-19 outbreak in Iran and Turkey, respectively. This application indicates that the three models fail to predict the first 10 to 20 days of data, depending on the prediction model. On the other hand, the results obtained for the rest of the data demonstrate that the three prediction models achieve high values for the determination coefficient, whereas they yielded to different average absolute relative errors. Based on the comparison, the recursive-based model performs the best, while it estimated the COVID-19 outbreak in Iran better than that of in Turkey. Impacts of applying or relaxing control measurements like curfew in Turkey and reopening the low-risk businesses in Iran were investigated through the recursive-based model. Finally, the results demonstrate the merit of the recursive-based model in analyzing various scenarios, which may provide suitable information for health politicians and public health decision-makers.
In this study, twenty-two new mathematical schemes with third-order of convergence are gathered from the literature and applied to pipe network analysis. The presented methods were classified into one-step, two-step, and three-step schemes based on the number of hypothetical discharges utilized in solving pipe networks. The performances of these new methods and Hardy Cross method were compared by solving a sample pipe network considering four different scenarios (92 cases). The results show that the one-step methods improve the rate of convergence of the Hardy Cross method in 10 out of 24 cases (41%), while this improvement was found to be 39 out of 56 cases (69.64%) and 5 out of 8 cases (62.5%) for the two-step and three-step methods, respectively. This obviously indicates that the modified schemes, particularly the three-step methods, improve the performance of the original loop corrector method by taking lower number of iterations with the compensation of relatively more computational efforts.
The main purpose of this study is to investigate the importance of programming in the learning and understanding of water distribution networks. This paper presents the implementation of a programming language C# for applications for teaching water distribution networks calculations at both undergraduate and graduate levels. A user's guide is also prepared for the software which includes the theory of hydraulic and optimization calculations. There are many ways to design water distribution networks. Hardy Cross method is very often used for optimization of networks. Thus, Hardy Cross optimization method was preferred in this study. It is a perfect study to implement as an educational tool at undergraduate and graduate levels of education.
The study of water surface profiles is beneficial to various applications in water resources management. In this study, two artificial intelligence (AI) models named the artificial neural network (ANN) and genetic programming (GP) were employed to estimate the length of six steady GVF profiles for the first time. The AI models were trained using a database consisting of 5154 dimensionless cases. A comparison was carried out to assess the performances of the AI techniques for estimating lengths of 330 GVF profiles in both mild and steep slopes in trapezoidal channels. The corresponding GVF lengths were also calculated by 1-step, 3-step, and 5-step direct step methods for comparison purposes. Based on six metrics used for the comparative analysis, GP and the ANN improve five out of six metrics computed by the 1-step direct step method for both mild and steep slopes. Moreover, GP enhanced GVF lengths estimated by the 3-step direct step method based on three out of six accuracy indices when the channel slope is higher and lower than the critical slope. Additionally, the performances of the AI techniques were also investigated depending on comparing the water depth of each case and the corresponding normal and critical grade lines. Furthermore, the results show that the more the number of subreaches considered in the direct method, the better the results will be achieved with the compensation of much more computational efforts. The achieved improvements can be used in further studies to improve modeling water surface profiles in channel networks and hydraulic structure designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.