Recent approaches to action classification in videos have used sparse spatio-temporal words encoding local appearance around interesting movements. Most of these approaches use a histogram representation, discarding the temporal order among features. But this ordering information can contain important information about the action itself, e.g. consider the sport disciplines of hurdle race and long jump, where the global temporal order of motions (running, jumping) is important to discriminate between the two. In this work we propose to use a sequential representation which retains this temporal order. Further, we introduce Discriminative Subsequence Mining to find optimal discriminative subsequence patterns. In combination with the LPBoost classifier, this amounts to simultaneously learning a classification function and performing feature selection in the space of all possible feature sequences. The resulting classifier linearly combines a small number of interpretable decision functions, each checking for the presence of a single discriminative pattern. The classifier is benchmarked on the KTH action classification data set and outperforms the best known results in the literature
In web-related applications of image categorization, it is desirable to derive an interpretable classification rule with high accuracy. Using the bag-of-words representation and the linear support vector machine, one can partly fulfill the goal, but the accuracy of linear classifiers is not high and the obtained features are not informative for users. We propose to combine item set mining and large margin classifiers to select features from the power set of all visual words. Our resulting classification rule is easier to browse and simpler to understand, because each feature has richer information. As a next step, each image is represented as a graph where nodes correspond to local image features and edges encode geometric relations between features. Combining graph mining and boosting, we can obtain a classification rule based on subgraph features that contain more information than the set features. We evaluate our algorithm in a web-retrieval ranking task where the goal is to reject outliers from a set of images returned for a keyword query. Furthermore, it is evaluated on the supervised classification tasks with the challenging VOC2005 data set. Our approach yields excellent accuracy in the unsupervised ranking task compared to a recently proposed probabilistic model and competitive results in the supervised classification task
A common representation used in text categorization is the bag of words model (aka. unigram model). Learning with this particular representation involves typically some preprocessing, e.g. stopwords-removal, stemming. This results in one explicit tokenization of the corpus. In this work, we introduce a logistic regression approach where learning involves automatic tokenization. This allows us to weaken the a-priori required knowledge about the corpus and results in a tokenization with variable-length (word or character) n-grams as basic tokens. We accomplish this by solving logistic regression using gradient ascent in the space of all ngrams. We show that this can be done very efficiently using a branch and bound approach which chooses the maximum gradient ascent direction projected onto a single dimension (i.e., candidate feature). Although the space is very large, our method allows us to investigate variable-length n-gram learning. We demonstrate the efficiency of our approach compared to state-of-the-art classifiers used for text categorization such as cyclic coordinate descent logistic regression and support vector machines.
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.