Electromagnetic radiation (EMR) or radiofrequency fields of cellular mobile phones may affect biological systems by increasing free radicals, which appear mainly to enhance lipid peroxidation, and by changing the antioxidant defense systems of human tissues, thus leading to oxidative stress. Mobile phones are used in close proximity to the heart, therefore 900 MHz EMR emitting mobile phones may be absorbed by the heart. Caffeic acid phenethyl ester (CAPE), one of the major components of honeybee propolis, was recently found to be a potent free radical scavenger and antioxidant, and is used in folk medicine. The aim of this study was to examine 900 MHz mobile phone-induced oxidative stress that promotes production of reactive oxygen species (ROS) and the role of CAPE on myocardial tissue against possible oxidative damage in rats. Thirty rats were used in the study. Animals were randomly grouped as follows: sham-operated control group (N: 10) and experimental groups: (a) group II: 900 MHz EMR exposed group (N: 10); and (b) group III: 900 MHz EMR exposed+CAPE-treated group (N: 10). A 900 MHz EMR radiation was applied to groups II and III 30 min/day, for 10 days using an experimental exposure device. Malondialdehyde (MDA, an index of lipid peroxidation), and nitric oxide (NO, a marker of oxidative stress) were used as markers of oxidative stress-induced heart impairment. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status. In the EMR exposed group, while tissue MDA and NO levels increased, SOD, CAT and GSH-Px activities were reduced. CAPE treatment in group III reversed these effects. In this study, the increased levels of MDA and NO and the decreased levels of myocardial SOD, CAT and GSH-Px activities demonstrate the role of oxidative mechanisms in 900 MHz mobile phone-induced heart tissue damage, and CAPE, via its free radical scavenging and antioxidant properties, ameliorates oxidative heart injury. These results show that CAPE exhibits a protective effect on mobile phone-induced and free radical mediated oxidative heart impairment in rats.
Oxidative effects via free radical generation in smokers have been widely investigated. They cause lipid peroxidation, oxidation of proteins and damage to mainly lung and other tissues. In humans, antioxidative capacity of serum is related to antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and melatonin. The effect of cigarette smoking on plasma levels of melatonin and antioxidant enzymes has not been established together yet. Also, it may not be clear if melatonin levels are affected by smoking and melatonin has a protective effect on cigarette smoking-induced free radical damage. The aim of this study is to investigate the relationship between smoking and antioxidant capacity including melatonin, a powerful endogenous antioxidant, and antioxidant enzymes in teenage girls who are active smokers. Additionally, malondialdehyde (MDA) levels were determined in those who have smoked at least one packet a day for three or more years. MDA levels have been used as a convenient index of the lipid peroxidation-related oxidative damage of tissues. Twenty-one young female active smokers who study at the School of Nursing and 21 nonsmoking students (as controls) at the same school were included in the study. The activities of two principal antioxidant enzymes SOD, GSH-Px and plasma levels of MDA were significantly increased but melatonin content of the blood was significantly decreased as compared to nonsmokers. In spite of an increase in antioxidant enzyme activities, MDA levels were slightly increased in smokers. This indicates that antioxidant self-defence mechanisms may not sufficiently protect the respiratory system from smoke-mediated oxidative injury. This result may be related to low melatonin levels in teenage female smokers. It seems that melatonin can reduce free radical damage to the respiratory system induced by cigarette smoke. Further experimental investigations with exogenous melatonin treatments will be needed.
Numerous reports have described the effects induced by an electromagnetic field (EMF) in various cellular systems. The purposes of this study were to examine oxidative stress that promotes production of reactive oxygen species induced by a 900-megahertz (MHz) mobile phone and the possible ameliorating effects of vitamins E and C on endometrial tissue against EMF-induced endometrial impairment and apoptosis in rats. Animals were randomly grouped as follows: (1) sham-operated control group (n=8), (2) 900 MHz EMF-exposed group (n=8; 30 min/d for 30 d), and (3) 900 MHz EMF-exposed group, treated with vitamins E and C (n=8; 50 mg/kg intramuscularly and 20 mg/kg body weight intraperitoneally before daily EMF exposure). Malondialdehyde (an index of lipid peroxidation) was used as a marker of oxidative stress-induced endometrial impairment; Bcl-2, Bax, caspase-3, and caspase-8 were assessed immunohistochemically. In this study, increased malondialdehyde levels in endometrial tissue and apoptosis illustrated the role of the oxidative mechanism induced by exposure to a 900-MHz mobile phone-like device and vitamins E and C; via free radical scavenging and antioxidant properties, oxidative tissue injury and apoptosis were ameliorated in rat endometrium. In conclusion, exposure to 900-MHz radiation emitted by mobile phones may cause endometrial apoptosis and oxidative stress, but treatment with vitamins E and C can diminish these changes and may have a beneficial effect in preventing endometrial changes in rats.
Ghrelin and adiponectin have been found in breast milk and are considered to take part in the regulation of growth and energy metabolism of infants. Our aims were to determine ghrelin and adiponectin levels in breast milk and serum samples of mothers and their infants, and to investigate the relationship between their levels and anthropometry of newborn infants during early postnatal life. Total and active ghrelin and adiponectin levels were studied in breast milk, and the serum samples of 25 healthy lactating women and their healthy fullterm infants were taken at the 1st and 4th months of life. Anthropometric measurements of infants were also performed during the study period. Breast milk and infant serum active ghrelin levels were found to be significantly increased at the 4th month of life compared with 1st month levels (p < 0.05). Maternal serum total ghrelin and infant serum adiponectin levels were found to be significantly reduced at the 4th month of life (p < 0.05). Breast milk active ghrelin levels were higher than the infant and maternal serum active ghrelin at the 1st and 4th months (p < 0.05). There was a negative significant correlation between the level of infant serum active ghrelin levels and BMI of infants at the 1st month. A positive significant correlation was found between the level of 1st month infant serum adiponectin levels and weight gain of infants during the study period. Fourth month infant serum adiponectin were also positively correlated with weight and BMI of infants at the 4th month and the weight gain during study period. There was a positive significant correlation between the level of 4th month breast milk active ghrelin and weight gain of infants during the study period. Ghrelin and adiponectin are involved in postnatal growth of infants. Ghrelin in breast milk also seems to be related to the growth of infants during early postnatal life. The sources of these peptides in breast milk are probably both maternal serum and breast tissue itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.