The blending of ethanol with imported gasoline types has been compulsory since January 1, 2018, with the Communiqué No. 30098 published in the Official Gazette in Turkey. In line with this, it is aimed to determine the effects of gasoline-ethanol blends on engine performance and exhaust emissions resulting from the use of an SI engine. The experiments were performed at different speeds for different ethanol-gasoline blends (E0, E10 and E20) under full load in a four-stroke, single-cylinder engine. As a result, air-fuel mixture ratios, torque, power, vibration and noise values, specific fuel consumption, harmful gas emissions (CO, HC, CO 2 and NOx) was measured. Measurements were obtained with 96% accuracy. In this study, carbon monoxide and hydrocarbon emissions decreased, carbon dioxide and nitrogen oxide emissions increased by the addition of ethanol to gasoline. On the other hand, the addition of ethanol has also led to a certain increase in brake specific fuel consumption, vibration and noise levels.
This paper presents an experimental study on the mechanical properties of ultra-high-strength steels at elevated temperatures. Tensile tests were carried out at 300-600°C on Docol 1200M and Docol 1400M steel samples. The results indicate that as the temperature increases Young's Modulus, yield strength (YS) and ultimate tensile strength (UTS) display a decrease. YS/UTS ratios at 300°C are lower than those at room temperature, they make peaks at 400 and 500°C for Docol 1400M and Docol 1200M, respectively, and then decrease again beyond those temperatures. While total elongation continuously increases, uniform elongation slightly decreases with increasing temperature. Present carbides in tempered matrix continue to grow and new carbides are observed at the grain boundaries. Considering all roll forming parameters, 300°C seems the most convenient temperature for warm forming. In this sense, the warm roll forming has a potential for forming complex-shaped parts by reconciling strength with formability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.