Ag is used as a useful alloying element in brazing filler metals. It is clear that the addition of Ag has a positive effect on the melting temperature, wettability, conductivity and mechanical property of the filler metals. For this reason, although Ag is very expensive, it is still widely used in many research and production. In this study, it was focused on obtaining both high strength and cost-effective brazing joints by using filler metals containing different levels of Ag. Melting-solidification temperatures, mechanical properties and microstructures of brazing joints obtained with filler metals containing different levels of Ag-Cu-Zn and Cd were investigated. In this study, the appropriate Ag content in brazing processes of pipes and caps used as copper-brass material pairing in cooling-heating devices in the air conditioning system was investigated in detail. When the typical microstructure of the joints was examined, it was observed that it mainly consisted of solid solutions and eutectic phases. The interfaces in the copper and brass regions were affected by both Ag content and melting temperatures. As a result of the burst test, the maximum stress value at which the brazed material pairs were damaged was found to be 345 MPa, and the damage was reported to occur in the copper pipe. In addition, it has been reported that the final product is damaged from the brazed zone when Ag-free solder wire is used. It was found that 5%Ag content provides sufficient performance in the final product due to the fact that the strength of the braze joint with low-Ag content is higher than the copper tube. The results also showed that the micro-hardness increased with the increase of Ag-addition, the hardness of the joint with the filler metal containing 5%Ag increased by 21%. The joint hardness obtained with filler metal containing 40% Ag showed an increase of up to 57%. This showed that the addition of Ag improves the strength, but its 5% Ag content provides sufficient performance in the brazing joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.