In this study, we give well-posedness conditions for planar conewise linear systems where the vector field is not necessarily continuous. It is further shown that, for a certain class of planar conewise linear systems, well posedness is independent of the conic partition of
R
2. More specifically, the system is well posed for any conic partition of
R
2.
a b s t r a c tThis paper investigates the global asymptotic stability of a class of bimodal piecewise linear systems in R 3 . The approach taken allows the vector field to be discontinuous on the switching plane. In this framework, verifiable necessary and sufficient conditions are proposed for global asymptotic stability of bimodal systems being considered. It is further shown that the way the subsystems are coupled on the switching plane plays a crucial role on global asymptotic stability. Along this line, it is demonstrated that a constant (which is called the coupling constant in the paper) can be changed without changing the eigenvalues of subsystems and this change can make bimodal system stable or unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.