AI fairness is an essential topic as regards its topical and social-societal implications. However, there are many challenges posed by automating AI fairness. Based on the challenges around automating fairness in texts, our study aims to create a new fairness testing paradigm that can gather disparate proposals on fairness on a single platform, test them, and develop the most effective method, thereby contributing to the general orientation on fairness. To ensure and sustain mass participation in solving the fairness problem, gamification elements are used to mobilize individuals’ motivation. In this framework, gamification in the design allows participants to see their progress and compare it with other players. It uses extrinsic motivation elements, i.e., rewarding participants by publicizing their achievements to the masses. The validity of the design is demonstrated through the example scenario. Our design represents a platform for the development of practices on fairness and can be instrumental in making contributions to this issue sustainable. We plan to further realize a plot application of this structure designed with the gamification method in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.