The generalized fractional Benjamin-Bona-Mahony (gfBBM) equation models the propagation of small amplitude long unidirectional waves in a nonlocally and nonlinearly elastic medium. The equation involves two fractional terms unlike the well-known fBBM equation. In this paper, we prove local existence and uniqueness of the solutions for the Cauchy problem. The sufficient conditions for the existence of solitary wave solutions are obtained. The Petviashvili method is proposed for the generation of the solitary wave solutions and their evolution in time is investigated numerically by Fourier spectral method. The efficiency of the numerical methods is tested and the relation between nonlinearity and fractional dispersion is observed by various numerical experiments.
The existence, uniqueness, and stability of periodic traveling waves for the fractional Benjamin-Bona-Mahony equation is considered. In our approach, we give sufficient conditions to prove a uniqueness result for the single-lobe solution obtained by a constrained minimization problem. The spectral stability is then shown by determining that the associated linearized operator around the wave restricted to the orthogonal of the tangent space related to the momentum and mass at the periodic wave has no negative eigenvalues. We propose the Petviashvili's method to investigate the spectral stability of the periodic waves for the fractional Benjamin-Bona-Mahony equation, numerically. Some remarks concerning the orbital stability of periodic traveling waves are also presented.
In this paper, we consider the higher order Boussinesq (HBq) equation which models the bi-directional propagation of longitudinal waves in various continuous media. The equation contains the higher order effects of frequency dispersion. The present study is devoted to the numerical investigation of the HBq equation. For this aim a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge Kutta method in time is constructed. The convergence of semi-discrete scheme is proved in an appropriate Sobolev space. To investigate the higher order dispersive effects and nonlinear effects on the solutions of HBq equation, propagation of single solitary wave, head-on collision of solitary waves and blow-up solutions are considered.
We study numerically the semi‐classical limit for three‐coupled long wave–short wave interaction equations. The Fourier–Galerkin semi‐discretization is proved to be spectrally convergent in an appropriate energy space. We propose a split‐step Fourier method in the semi‐classical regime with the discussion of the meshing strategy, which is necessary to obtain correct numerical solution. Plane wave solution with weak and strong initial phases, solitary wave solution and Gaussian solution are considered to investigate the semi‐classical limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.