A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.