Recent work from this laboratory demonstrated that apoptosis of pulmonary alveolar epithelial cells (AEC) in response to Fas requires angiotensin II (ANGII) generation de novo and binding to its receptor (Wang et al., 1999b, Am J Physiol Lung Cell Mol Physiol 277:L1245-L1250). These findings led us to hypothesize that a similar mechanism might be involved in the induction of AEC apoptosis by TNF-alpha. Apoptosis was detected by assessment of nuclear and chromatin morphology, increased activity of caspase 3, binding of annexin V, and by net cell loss inhibitable by the caspase inhibitor ZVAD-fmk. Purified human TNF-alpha induced dose-dependent apoptosis in primary type II pneumocytes isolated from rats or in the AEC-derived human lung carcinoma cell line A549. Apoptosis in response to TNF-alpha was inhibited in a dose-dependent manner by the nonselective ANGII receptor antagonist saralasin or by the nonthiol ACE inhibitor lisinopril; the inhibition of TNF-induced apoptosis was maximal at 50 microgram/ml saralasin (101% inhibition) and at 0.5 microgram/ml lisinopril (86% inhibition). In both cell culture models, purified TNF-alpha caused a significant increase in the mRNA for angiotensinogen (ANGEN), which was not expressed in unactivated cells. Transfection of primary cultures of rat AEC with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of TNF-stimulated apoptosis by 72% (P < 0.01). Exposure to TNF-alpha increased the concentration of ANGII in the serum-free extracellular medium by fivefold in A549 cell cultures and by 40-fold in primary AEC preparations; further, exposure to TNF-alpha for 40 h caused a net cell loss of 70%, which was completely abrogated by either the caspase inhibitor ZVAD-fmk, lisinopril, or saralasin. Apoptosis in response to TNF-alpha was also completely inhibited by neutralizing antibodies specific for ANGII (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by TNF-alpha requires a functional renin/angiotensin system (RAS) in the target cell. They also suggest that therapeutic control of AEC apoptosis in response to TNF-alpha is feasible through pharmacologic manipulation of the local RAS.
Recent work from this laboratory demonstrated that apoptosis of pulmonary alveolar epithelial cells (AEC) in response to Fas requires angiotensin II (ANGII) generation de novo and binding to its receptor (Wang et al., 1999b, Am J Physiol Lung Cell Mol Physiol 277:L1245-L1250). These findings led us to hypothesize that a similar mechanism might be involved in the induction of AEC apoptosis by TNF-alpha. Apoptosis was detected by assessment of nuclear and chromatin morphology, increased activity of caspase 3, binding of annexin V, and by net cell loss inhibitable by the caspase inhibitor ZVAD-fmk. Purified human TNF-alpha induced dose-dependent apoptosis in primary type II pneumocytes isolated from rats or in the AEC-derived human lung carcinoma cell line A549. Apoptosis in response to TNF-alpha was inhibited in a dose-dependent manner by the nonselective ANGII receptor antagonist saralasin or by the nonthiol ACE inhibitor lisinopril; the inhibition of TNF-induced apoptosis was maximal at 50 microgram/ml saralasin (101% inhibition) and at 0.5 microgram/ml lisinopril (86% inhibition). In both cell culture models, purified TNF-alpha caused a significant increase in the mRNA for angiotensinogen (ANGEN), which was not expressed in unactivated cells. Transfection of primary cultures of rat AEC with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of TNF-stimulated apoptosis by 72% (P < 0.01). Exposure to TNF-alpha increased the concentration of ANGII in the serum-free extracellular medium by fivefold in A549 cell cultures and by 40-fold in primary AEC preparations; further, exposure to TNF-alpha for 40 h caused a net cell loss of 70%, which was completely abrogated by either the caspase inhibitor ZVAD-fmk, lisinopril, or saralasin. Apoptosis in response to TNF-alpha was also completely inhibited by neutralizing antibodies specific for ANGII (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by TNF-alpha requires a functional renin/angiotensin system (RAS) in the target cell. They also suggest that therapeutic control of AEC apoptosis in response to TNF-alpha is feasible through pharmacologic manipulation of the local RAS.
In the course of clinical investigations on healthy Egyptian men, we observed that during a period of rest in the sitting posture the systolic blood pressure often fell below 90 and usually below 100 mm. of mercury. This led to a study of the blood pressures of British subjects resident in Egypt and of others resident in London. The pressure found under the conditions described below is called basal* blood pressure because it was not found possible to reduce it appreciably below this level by rest or sleep. Our observations in a physiological type of low blood pressure may be of interest in relation to low blood pressure which is thought to be pathological. METHODMeasurements of the blood pressure were made by the auscultatory method, either with manometers in which the whole of the mercury column was visible, or with those of the Baumanometer type which had been checked by an ordinary mercury manometer. The diastolic pressure was taken at the moment when the arterial sound becomes muffled, usually 5 mm. higher than that at which the sound disappeared. The blood pressure was measured on the left arm with the subject sitting in a quiet, warm room. All subjects were instructed to find a comfortable posture, and then to remain still and with the mind blank throughout the half-hour or longer period during which the measurements were made. No conversation was allowed. The observer avoided unnecessary movement, and as a rule no third person entered the room during this time. To allay apprehension the subjects were informed that the investigation would be confined to the repeated measurement of blood pressure. Most subjects became somnolent but in general did not sleep.The blood pressure was measured as frequently as possible during the first three minutes after adopting the sitting posture. Blood pressure readings were then taken every few minutes throughout the half-hour period of rest, in order to habituate the subject to the procedure of blood pressure measurement. Without habituation of the subject by the continuous presence of the observer and by repeated measurements, the blood pressure falls are less than those we report. Towards the end of the half-hour period the measurements of the blood pressure were made at intervals of about one minute. RESULTSIn Fig. 1 are recorded systolic blood pressures and in Fig. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.