Aluminum, with its distinctively favorable dielectric characteristics down to deep ultraviolet (UV) regime, has recently emerged as a broad-band and low-cost alternative to noble metals. However, low Q-factor resonances (Q ∼ 2−4), offered by Al nanostructures, pose a fundamental bottleneck for many practical applications. Here, we show that it is possible to realize Al-nanoantenna with remarkably large extinction cross sections and strong resonance characteristics surpassing those of their noble metal counterparts. By quenching radiation damping through far-field coherent dipolar interactions, we experimentally demonstrate exceptionally narrow line width (∼15 nm) and high Q-factor (∼27) dipolar plasmonic resonances in the blue-violet region of the optical spectrum (∼3 eV) beyond the practical operational limits of traditional plasmonic metals. To realize high Q-factor Al resonators, we introduce a novel space mapping algorithm enabling inverse design of Al nanoantenna arrays at arbitrary sub/superstrate material interfaces with diminished radiative losses. We show that radiatively coupled Al nanoantenna arrays offer remarkably high-Q factor (27 ≤ Q ≤ 53) resonances over the entire visible spectrum and readily outperform similarly optimized silver (Ag) nanoantenna arrays in green-blue-violet wavelengths (≤550 nm) and near UV regime. This report shows that it is possible to realize high Q-factor aluminum resonators by suppressing radiative losses and that Al-based plasmonics holds enormous potential as a viable and low-cost alternative to noble metals. Our inverse-design technique, on the other hand, provides a general and efficient approach in engineering of high Q-factor resonator arrays, independently from the metals and sub/superstrates used.
Aluminum has emerged as a broadband and low-cost alternative to noble metals. We demonstrate remarkably high quality-factor plasmonic resonances in inverse-designed aluminum- nanostructures over a broad spectrum from visible to near-ultraviolet, surpassing those of silver counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.