A code clone is a pair of code fragments, within or between software systems that are similar. Since code clones often negatively impact the maintainability of a software system, several code clone detection techniques and tools have been proposed and studied over the last decade. However, the clone detection tools are not always perfect and their clone detection reports often contain a number of false positives or irrelevant clones from specific project management or user perspective. To detect all possible similar source code patterns in general, the clone detection tools work on the syntax level while lacking user-specific preferences. This often means the clones must be manually inspected before analysis in order to remove those false positives from consideration. This manual clone validation effort is very time-consuming and often error-prone, in particular for large-scale clone detection. In this paper, we propose a machine learning approach for automating the validation process. First, a training dataset is built by taking code clones from several clone detection tools for different subject systems and then manually validating those clones. Second, several features are extracted from those clones to train the machine learning model by the proposed approach. The trained algorithm is then used to automatically validate clones without human inspection. Thus the proposed approach can be used to remove the false positive clones from the detection results, automatically evaluate the precision of any clone detectors for any given set of datasets, evaluate existing clone benchmark datasets, or even be used to build new clone benchmarks and datasets with minimum
Scientific Workflow Management Systems (SWfMSs) have become popular for accelerating the specification, execution, visualization, and monitoring of data-intensive scientific experiments. Unfortunately, to the best of our knowledge no existing SWfMSs directly support collaboration. Data is increasing in complexity, dimensionality, and volume, and the efficient analysis of data often goes beyond the realm of an individual and requires collaboration with multiple researchers from varying domains. In this paper, we propose a groupware system architecture for data analysis that in addition to supporting collaboration, also incorporates features from SWfMSs to support modern data analysis processes. As a proof of concept for the proposed architecture we developed SciWorCS - a groupware system for scientific data analysis. We present two real-world use-cases: collaborative software repository analysis and bioinformatics data analysis. The results of the experiments evaluating the proposed system are promising. Our bioinformatics user study demonstrates that SciWorCS can leverage real-world data analysis tasks by supporting real-time collaboration among users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.