No abstract
We consider the problem of reconfiguring a set of physical objects into a desired target configuration, a typical (sub)task in robotics and automation, arising in product assembly, packaging, stocking store shelves, and more. In this paper we address a variant, which we call space-aware reconfiguration, where the goal is to minimize the physical space needed for the reconfiguration, while obeying constraints on the allowable collision-free motions of the objects. Since for given start and target configurations, reconfiguration may be impossible, we translate the entire target configuration rigidly into a location that admits a valid sequence of moves, where each object moves in turn just once, along a straight line, from its starting to its target location, so that the overall physical space required by the start, all intermediate, and target configurations for all the objects is minimized.We investigate two variants of space-aware reconfiguration for the often examined setting of n unit discs in the plane, depending on whether the discs are distinguishable (labeled) or indistinguishable (unlabeled). For the labeled case, we propose a representation of size Opn 4 q of the space of all feasible initial rigid translations, and use it to find, in Opn 6 q time, a shortest valid translation, or one that minimizes the enclosing disc or axis-aligned rectangle of both the start and target configurations. For the significantly harder unlabeled case, we show that for almost every direction, there exists a translation in this direction that makes the problem feasible. We use this to devise heuristic solutions, where we optimize the translation under stricter notions of feasibility. We present an implementation of such a heuristic, which solves unlabeled instances with hundreds of discs in seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.