The excellent conductivity and versatile surface chemistry of MXenes render these nanomaterials attractive for sensor applications. This mini-review puts recent advances in MXene-based sensors into perspective and provides prospects for the area. It describes the attractive properties and the working principles of MXene-based sensors fabricated from a MXene/polymer nanocomposite or a pristine MXene. The importance of surface modification of MXenes to improve their affinity for polymers and to develop self-healing and durable sensors is delineated. Several novel sensor fabrication methods and their challenges are discussed. Emerging applications of MXene-based sensors including moisture, motion, gas, and humidity detection as well as pressure distribution mapping are critically reviewed. Potential applications of MXene-based sensors in the food industry to monitor food materials and production plants are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.