Performance testing with the aim of generating an efficient and effective workload to identify performance issues is challenging. Many of the automated approaches mainly rely on analyzing system models, source code, or extracting the usage pattern of the system during the execution. However, such information and artifacts are not always available. Moreover, all the transactions within a generated workload do not impact the performance of the system the same way, a finely tuned workload could accomplish the test objective in an efficient way. Model-free reinforcement learning is widely used for finding the optimal behavior to accomplish an objective in many decision-making problems without relying on a model of the system. This paper proposes that if the optimal policy (way) for generating test workload to meet a test objective can be learned by a test agent, then efficient test automation would be possible without relying on system models or source code. We present a self-adaptive reinforcement learning-driven load testing agent, RELOAD, that learns the optimal policy for test workload generation and generates an effective workload efficiently to meet the test objective. Once the agent learns the optimal policy, it can reuse the learned policy in subsequent testing activities. Our experiments show that the proposed intelligent load test agent can accomplish the test objective with lower test cost compared to common load testing procedures, and results in higher test efficiency.
Background: End-user satisfaction is not only dependent on the correct functioning of the software systems but is also heavily dependent on how well those functions are performed. Therefore, performance testing plays a critical role in making sure that the system responsively performs the indented functionality. Load test generation is a crucial activity in performance testing. Existing approaches for load test generation require expertise in performance modeling, or they are dependent on the system model or the source code.Aim: This thesis aims to propose and evaluate a model-free learning-based approach for load test generation, which doesn't require access to the system models or source code.Method: In this thesis, we treated the problem of optimal load test generation as a reinforcement learning (RL) problem. We proposed two RL-based approaches using q-learning and deep q-network for load test generation. In addition, we demonstrated the applicability of our tester agents on a real-world software system. Finally, we conducted an experiment to compare the efficiency of our proposed approaches to a random load test generation approach and a baseline approach.Results: Results from the experiment show that the RL-based approaches learned to generate the effective workloads with smaller sizes and in fewer steps. The proposed approaches led to higher efficiency than the random and baseline approaches.Conclusion: Based on our findings, we conclude that RL-based agents can be used for load test generation, and they act more efficiently than the random and baseline approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.