Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.
Understanding the link between the protective role of potassium silicate (K2SiO3) against water shortage and the eventual grain yield of maize plants is still limited under semiarid conditions. Therefore, in this study, we provide insights into the underlying metabolic responses, mineral nutrients uptake and some nonenzymatic and enzymatic antioxidants that may differ in maize plants as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three drip irrigation regimes (100, 75 and 50% of water requirements). Our results indicated that, generally, plants were affected by both moderate and severe deficit irrigation levels. Deficit irrigation decreased shoot dry weight, root dry weight, leaf area index (LAI), relative water content (RWC), N, P, K, Ca, Fe, Zn, carotenoids, grain yield and its parameters, while root/shoot ratio, malondialdehyde (MDA), proline, soluble sugars, ascorbic acid, soluble phenols, peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) were improved. The foliar applications of K2SiO3 relatively alleviated water stress-induced damage. In this respect, the treatment of 2 mM K2SiO3 was more effective than others and could be recommended to mitigate the effect of deficit irrigation on maize plants. Moreover, correlation analysis revealed a close link between yield and the most studied traits.
Calcium is one of the most limiting factors for the growth and reproduction of peanut, which ultimately affects pod and seed yields. A two-year field experiment was carried out to assess the impact of five calcium applications, including nano-calcium and conventional forms, on growth, leaf nutrient content, yield traits, and quality parameters of three diverse peanut cultivars (Ismailia-1, Giza-5, and Giza-6). The applied calcium applications were calcium sulfate, which is recommended for commercial peanut cultivation and commonly referred to as gypsum (coded as Ca-1), calcium nitrate (Ca-2), nano-calcium nitrate (Ca-3), 50% calcium nitrate + 50% nano-calcium (Ca-4), and 50% calcium sulfate + 50% nano-calcium (Ca-5). Calcium sulfate (gypsum, Ca-1) was soil-supplied during the seedbed preparation as recommended, while the other calcium applications (Ca-2, Ca-3, Ca-4, and Ca-5) were exogenously sprayed three times at 30, 45, and 60 days after sowing. The soil of the experimental site was alkaline, with a high pH of 8.6. The results revealed significant differences among cultivars, calcium applications, and their interactions. The soil-supplied gypsum Ca-1 displayed lower agronomic performance on all recorded growth, leaf nutrient content, yield traits, and quality parameters. On the other hand, the foliar-supplied calcium, particularly Ca-4 and Ca-5, displayed superior effects compared to the other simple calcium forms. Ca-4 and Ca-5 produced significantly higher seed yield (3.58 and 3.38 t/ha) than the simple recommended form (Ca-1, 2.34 t/ha). This could be due to the difficulty of calcium uptake from soil-supplied calcium under high soil pH compared to the exogenously sprayed nano-calcium form. Moreover, the superior performance of Ca-4 and Ca-5 could be caused by the mixture of fertilizers from the synergistic effect of calcium and nitrate or sulfate. Furthermore, the effect of nitrate was applied in nano form in the Ca4 and Ca-5 treatments, which contributed to improving nutrient uptake efficiency and plant growth compared to the other treatments. The peanut cultivar Giza-6 showed superiority for most measured traits over the other two cultivars. The interaction effect between the assessed cultivars and calcium applications was significant for various traits. The cultivar Giza-6 showed a significant advantage for most measured traits with the mixture of 50% calcium nitrate + 50% nano-calcium (Ca-4). Conclusively, the results pointed out the advantage of the exogenously sprayed nano-calcium form combined with calcium nitrate or calcium sulfate for promoting growth, leaf nutrient content, yield, and quality traits of peanut, particularly with high-yielding cultivars under sandy soil with high pH.
Late or early sowing subjecting crop plants to stress conditions, this is simulating the climatic change effects. The global warming and climate change are critical issues in agriculture since progressive rise in temperature leads to exposure the crops to heat stress, hence low productivity. Since weather conditions are uncontrollable, it is impossible to modulate their negative impacts against crop growth and development. However, scientists should not be handcuffed about this serious problem. So, in open field conditions, the performance of some soybean genotypes was evaluated under different sowing dates. Along the two seasons of 2019 and 2020, field experiments were designed in a split-plot design using three replicates to evaluate the performance of four soybean genotypes (Giza-21, Giza-35, Giza-111, and Crawford) under four sowing dates (15th April, 30th April, 15th May, and 30th May). Various physiological and growth traits, yield attributes, seed nutrient contents, and oil and protein contents were estimated. Sowing Crawford (in both seasons) and Giza-35 (in the first season) on 15th April as well as Giza-111 either on 30th April or 15th May produced the highest catalase activity. In plots sown on 30th April, Crawford and Giza-21 (in the first season) and Giza-111 (in both seasons) exhibited the highest leaves area plant−1. Plots sown by Giza-111 on 30th April was the potent interaction for enhancing seed yield in both seasons. Under any sowing date in the second season and the sowing date of 30th April in the first season, Giza-111 was the effective genotype for recording the maximum seed oil content. For adopting a specific stress condition scenario, it is advisable to insert Giza-111 as an effective gene pool to improve soybean genotypes under unfavorable conditions, expressed in sowing dates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.