The wide bandgap Sb 2 S 3 is considered to be one of the most promising absorber layers in single-junction solar cells and a suitable top-cell candidate for multi-junction (tandem) solar cells. However, compared to mature thinfilm technologies, Sb 2 S 3 based thin-film solar cells are still lagging behind in the power conversion efficiency race, and the highest of just 7.5% has been achieved to date in a sensitized single-junction structure. Furthermore, to break single junction solar cell based Shockley-Queisser (S-Q) limits, tandem devices with wide bandgap top-cells and low bandgap bottom-cells hold a high potential for efficient light conversion. Though matured and desirable bottom-cell candidates like silicon (Si) are available, the corresponding mature wide bandgap top-cell candidates are still lacking. Hence, a literature review based on Sb 2 S 3 solar cells is urgently warranted. In this review, the progress and present status of Sb 2 S 3 solar cells are summarized. An emphasis is placed mainly on the improvement of absorber quality and device performance. Moreover, the low-performance causes and possible overcoming mechanisms are also explained. Last but not least, the potential and feasibility of Sb 2 S 3 in tandem devices are vividly discussed. In the end, several strategies and perspectives for future research are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.