Infrared Thermography has been used as a tool for predictive and preventive maintenance of Photovoltaic panels. International Electrotechnical Commission provides some guidelines for using thermography to detect defects in Photovoltaic panels. However, the proposed guidelines focus only on the location of the hot spot than diagnosing the types of faults. The long-term reliability and efficiency of panels can be affected by progressive defects such as discolouring and delamination. This paper proposed the new Thermal Pixel Counting algorithm to detect the above faults based on three thermal profile index values. The real-time experimental testing was carried out using FLIR T420bx® thermal imager and results have been provided to validate the proposed method. In this work, the fuzzy rule-based classification system is proposed to automate the classification process. Fuzzy reasoning method based on a single winner rule fuzzy classifier is designed with modified rule weights by particular grade. The performance of the proposed classifier is compared with the conventional fuzzy classifier and neural network model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.