The C-terminal domain of the pro-apoptotic protein Bax is a hydrophobic stretch which, it has been predicted, anchors this protein to the outer mitochondrial membrane when apoptosis is induced in the cell. A 21mer peptide imitating this domain has been synthesized together with two mutants, one with a S184 substituted by K and the other with the S184 deleted. When their structures were studied by infrared spectroscopy, it was seen that the three peptides formed aggregates both in solution and within lipid membranes, and that the peptide changed its secondary structure as a consequence of these two mutations. It was also observed that the wild-type peptide and the two mutants became membrane-integral molecules and changed their conformation when they were incorporated into model membranes with the same composition as the outer mitochondrial membrane. With the peptides incorporated in the membranes the location of W188 was studied by fluorescence quenching using the water soluble quencher acrylamide and different doxyl-PC located in the membrane, this residue being found at different membrane depths in each of the three peptides. The fact that the three peptides were able to perturb the motion of the fluorescent probe diphenylhexatriene confirmed their insertion in the membrane. However, whereas the wild type and the DeltaS184 mutant peptides were very efficient in releasing encapsulated carboxyfluorescein from liposomes, the mutant S184K was less efficient. Taken together, these results showed that the mutation tested changed the conformation of the C-terminal domain of Bax and the positions that they adopted when inserted in membranes, confirming the importance of S184 determining the conformation of this domain. At the same time, these results confirmed that the C-terminal domain of Bax participates in disrupting the barrier properties of biomembranes.
Differential scanning calorimetry was used to study the influence of a alpha-tocopherol on the thermotropic properties of model membranes composed by a series of heteroacid phosphatidylcholines with different amount of unsaturation in the sn-2 chain. The effect of alpha-tocopherol on 1,2-distearoylglycerophosphocholine (18:0,18:0), 1-stearoyl-2-oleoylgylcerophosphocholine (18:0,18:1), 1-stearoyl-2-linoleoylglycerophosphocholine (18:0,18:2), 1-stearoyl-2-linolenoylglycerophosphocholine (18:0,18:3), and 1-stearoyl-2-arachidonoylglycerophosphocholine (18:0,20:4) was determined. The addition of alpha-tocopherol perturbed the thermotropic gel to liquid-crystalline phase transition of these phospholipids. alpha-Tocopherol broadened the endotherm, lowered the transition temperature and decreased the associated enthalpy change. Partial phase diagrams showed the presence of fluid immiscibilities giving rise to lateral phase separation of domains containing different amounts of alpha-tocopherol. We suggest that, in these alpha-tocopherol-rich domains, the influence exerted by the vitamin on the phospholipids is strong enough to alter their thermotropic properties such that an additional endotherm appears in the thermogram, a characteristic not observed in homoacid phosphatidylcholines. alpha-Tocopherol caused a concentration-dependent removal of the detectable phase transition in all cases. The magnitude of the influence of alpha-tocopherol on phospholipid was dependent on the degree of unsaturation of the sn-2 acyl chain. These results are explained on the basis of the effect of alpha-tocopherol which will reduce the differences between gel and liquid crystalline states, the magnitude of these differences depending on the type of phospholipid considered, which are probably related to the change of molecular shape of phosphatidylcholines containing a polyunsaturated acyl chain.
Triamcinolone acetonide-21-palmitate was synthesized and incorporated into liposomes for intra-articular treatment of an experimentally-induced arthritis in the knee joints of rabbits. The liposomal formulation was more efficient than free triamcinolone acetonide in solution in suppressing the arthritis. Using radioactive tracers, it was found that triamcinolone acetonide-21-palmitate incorporated into liposomes was retained in the articular cavity, together with the liposomal lipids, for a much longer period than free triamcinolone acetonide, and this correlated with its anti-inflammatory effect.
Lipid activation of protein kinase C alpha (PKC alpha) was studied using a model mixture containing POPC/POPS (molar ratio 4:1) and different proportions of either DPG or POG. The lipid mixtures containing DPG were physically characterized by using different physical techniques, and a phase diagram was constructed by keeping a constant POPC/POPS molar ratio of 4:1 and changing the concentration of 1,2-DPG. The phase diagram displayed three regions delimited by two compounds: compound 1 (CO(1)) with 35 mol % of 1,2-DPG and compound 2 (CO(2)) with 65 mol % of 1,2-DPG. PKC alpha activity was assayed at increasing concentrations of 1,2-DPG, maximum activity being reached at 30 mol % 1,2-DPG, which decreased at higher concentrations. Maximum activity occurred, then, at concentrations of 1,2-DPG which corresponded to the transition from region 1 to region 2 of the phase diagram. It was interesting that this protein was maximally bound to the membrane at all DPG concentrations. Similar results were observed when the enzyme was activated by POG, when a maximum was reached at about 10 mol %. This remained practically constant up to 50 mol %, about which it decreased, the binding level remaining maximal and constant at all POG concentrations. The fact that in the assay conditions used maximal binding was already reached even in the absence of diacylglycerol was attributed to the interaction of the C2 domain with the POPS present in the membrane through the Ca(2+) ions also present. To confirm this, the isolated C2 domain was used, and it was also found to be maximally bound at all DPG concentrations and even in its absence. Since the intriguing interaction patterns observed seemed to be due then to the C1 domain, the PKC alpha mutant D246/248N was used. This mutant has a decreased Ca(2+)-binding capacity through the C2 domain and was not activated nor bound to membranes by increasing concentrations of DPG. However, POG was able to activate the mutant, which showed a similar dependence on POG concentration with respect to activity and binding to membranes. These data underline the importance of unsaturation in one of the fatty acyl chains of the diacylglycerol.
The activation of protein kinase C alpha was studied by using a lipid system consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) (molar ratio 4:1) and different proportions of 1-palmitoyl-2-oleoyl-sn-glycerol (POG). The phase behavior of the lipidic system was characterized by using differential scanning calorimetry and 31P NMR, and a phase diagram was elaborated. The results suggested the formation of two diacylglycerol/phospholipid complexes, one at 15 mol % of POG and the second at 30 mol % of POG. These two complexes would define the three regions of the phase diagram: in the first region (concentrations of POG lower than 15 mol %) there is gel-gel immiscibility at temperatures below that of the phase transition between C1 and pure phospholipid, and a fluid lamellar phase above of the phase transition. In the second region (between 15 and 30 mol % of POG), gel-gel immiscibility between C1 and C2 with fluid-fluid immiscibility was observed, while inverted hexagonal HII and isotropic phases were detected by 31P NMR. In the third region (concentrations of POG higher than 30 mol %), gel-gel immiscibility seemed to occur between C2 and pure POG along with fluid-fluid immiscibility, while an isotropic phase was detected by 31P NMR. When PKC alpha activity was measured, as a function of POG concentration, maximum activity was found at POG concentrations as low as 5-10 mol %; the activity slightly decreased as POG concentration was increased to 45 mol % at 32 degrees C (above Tc) whereas activity did not change with increasing concentrations of POG at 5 degrees C (below Tc). When the activity was studied as a function of temperature, at different POG concentrations, and depicted as Arrhenius plots, it was found that the activity increased with increasing temperatures, showing a discontinuity at a temperature very close to the phase transition of the system and a lower activation energy at the upper slope of the graph, indicating that the physical state of the membrane affected the interaction of PKC alpha with the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.