<div> <p>The structure of the wind turbines nowadays is a critical element due to their importance from the reliability, availability, safety, and cost points of view. This is more relevant when the offshore wind turbine is considered. This paper introduces a novel design of a Fault Detection and Diagnosis (FDD) model based on ultrasound technique. The FDD model will be able to detect fault/failures via the pulse-echo technique. The pulse-echo is got via piezoelectric transducers that are also employed as sensors. The signal processing is based on two steps. Firstly, a wavelet transform is applied to the measured signals with filtering purposes, in order to enhance the signal to noise ratio. Secondly, a time series modeling approach, as an autoregressive with exogenous input model, is employed for pattern recognition by minimizing the Akaike information criterion. An experimental platform is proposed to test the procedure, where pulse-echo experiments were employed before and after a fault occurred. The results from this paper lead to the identification of an early indication of structural problems induced by internal (material, shape, age, etc.) and external (temperature, humidity, pressure, etc.) factors. The model can anticipate catastrophic faults, reducing the preventive/corrective tasks and costs, etc, and increasing the availability of the wind turbine, and therefore the energy production.</p> </div> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.