The NRF2–KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells’ resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells’ biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Cell culture conditions highly influence cell metabolism in vitro. This is relevant for preclinical assays, for which fibroblasts are an interesting cell model, with applications in regenerative medicine, diagnostics and therapeutic development for personalized medicine, and the validation of ingredients for cosmetics. Given these cells’ short lifespan in culture, we aimed to identify the best cell culture conditions and promising markers to study mitochondrial health and stress in normal human dermal fibroblasts (NHDF). We tested the effect of reducing glucose concentration in the cell medium from high glucose (HGm) to a more physiological level [low glucose medium (LGm)], or its complete removal and replacement by galactose [medium that forces oxidative phosphorylation (OXPHOSm)], always in the presence of glutamine and pyruvate. We have demonstrated that only with OXPHOSm was it possible to observe the selective inhibition of mitochondrial adenosine triphosphate (ATP) production. This reliance on mitochondrial ATP was accompanied by changes in oxygen consumption rate and extracellular acidification rate, oxidation of citric acid cycle substrates, fatty acids, lactate, and other substrates, increased mitochondrial network extension and polarization, the increased protein content of voltage‐dependent anion channel (VDAC) and peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha and changes in several key transcripts related to energy metabolism. LGm did not promote significant metabolic changes in NHDF, although mitochondrial network extension and VDAC protein content were increased compared to HGm‐cultured cells. Our results indicate that short‐term adaptation to OXPHOSm is ideal for studying mitochondrial health and stress in NHDF.
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs’ formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.