This research work presents an information system to handle the problem of real-time guidance towards free charging slot in a city using past date and prediction and collaborative algorithms since there is no real-time system available to provide information if a charging spot is free or occupied. We explore the prediction approach using past data correlated with weather conditions. This approach will help the driver in the daily use of his electric vehicle, minimizing the problem of range anxiety, provide guidance towards charging spots with a probability value of being available for charging in a context for the app and smart cities. This work handles the uncertainty of the drivers to get a suitable and vacant place at a charging station because missing real-time information from the system and also during the driving process towards the free charging spot can be taken. We introduce a framework to allow collaboration and prediction process using past related data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.