Thus, similarly to growth factor signaling, fibronectin matrix assembly during early development can be both autocrine and paracrine. We therefore propose that it be considered a cell-cell communication event at the same level and significance as growth factor signaling during embryogenesis.
The African spiny mouse ( Acomys spp.) is an emerging animal model with remarkable biological characteristics that make it a subject of interest for a broad range of research fields. Typically a desert species adapted to a low-calorie diet, spiny mice develop diabetes-related symptoms when switched to high-energy diets. Spiny mice undergo relatively long gestation periods and have small litters of highly developed pups, making them an adequate model for late organogenesis and perinatal biology. Recently, they have been shown to have remarkable healing and regeneration capabilities, which make them unique among mammals. In this work, we describe our experience in housing a colony of African spiny mice and cover all basic aspects of feeding, maintenance and breeding for research purposes.
Somitogenesis starts with cyclic waves of expression of segmentation clock genes in the presomitic mesoderm (PSM) and culminates with periodic budding of somites in its anterior-most region. How cyclic clock gene expression is translated into timely morphological somite formation has remained unclear. A posterior to anterior gradient of increasing PSM tissue cohesion correlates with increasing fibronectin matrix complexity around the PSM, suggesting that fibronectin-dependent tissue mechanics may be involved in this transition. Here we address whether the mechanical properties of the PSM tissue play a role in regulating the pathway leading to cleft formation in the anterior PSM. We first interfered with cytoskeletal contractility in the chick PSM by disrupting actomyosin-mediated contractility directly or via Rho-associated protein kinase function. Then we perturbed fibronectin matrix accumulation around the PSM tissue by blocking integrin-fibronectin binding or fibronectin matrix assembly. All four treatments perturbed hairy1 and meso1 expression dynamics and resulted in defective somitic clefts. A model is presented where a gradient of fibronectin-dependent tissue mechanics participates in the PSM wavefront of maturation by ensuring the correct spatio-temporal conversion of cyclic segmentation clock gene expression into periodic somite formation.
Fibronectin is essential for somite formation in the vertebrate embryo. Fibronectin matrix assembly starts as cells emerge from the primitive streak and ingress in the unsegmented presomitic mesoderm (PSM). PSM cells undergo cyclic waves of segmentation clock gene expression, followed by Notch-dependent upregulation of meso1 in the rostral PSM which induces somite cleft formation. However, the relevance of the fibronectin matrix for these molecular processes remains unknown. Here, we assessed the role of the PSM fibronectin matrix in the spatio-temporal regulation of chick embryo somitogenesis by perturbing (1) extracellular fibronectin matrix assembly, (2) integrin–fibronectin binding, (3) Rho-associated protein kinase (ROCK) activity and (4) non-muscle myosin II (NM II) function. We found that integrin–fibronectin engagement and NM II activity are required for cell polarization in the nascent somite. All treatments resulted in defective somitic clefts and significantly perturbed meso1 and segmentation clock gene expression in the PSM. Importantly, inhibition of actomyosin-mediated contractility increased the period of hairy1/hes4 oscillations from 90 to 120 min. Together, our work strongly suggests that the fibronectin–integrin–ROCK–NM II axis regulates segmentation clock dynamics and dictates the spatio-temporal localization of somitic clefts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.