The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indices. We analyze the Dow Jones Industrial Average ( ∧ DJI) and the NASDAQ Composite ( ∧ IXIC) indexes at a daily time horizon. The methods and algorithms that have been explored for description of physical phenomena become an effective background, and even inspiration, for very productive methods used in the analysis of economical data. We start by applying the classical concepts of signal analysis, Fourier transform, and methods of fractional calculus. In a second phase we adopt a pseudo phase plane approach.
We propose a graphical method to visualize possible time-varying correlations between fif-teen stock market values. The method is useful for observing stable or emerging clusters of stock markets with similar behaviour. The graphs, originated from applying multidimen-sional scaling techniques (MDS), may also guide the construction of multivariate econo-metric models.
This paper applied MDS and Fourier transform to analyze different periods of the business cycle. With such purpose, four important stock market indexes (Dow Jones, Nasdaq, NYSE, S&P500) were studied over time. The analysis under the lens of the Fourier transform showed that the indexes have characteristics similar to those of fractional noise. By the other side, the analysis under the MDS lens identified patterns in the stock markets specific to each economic expansion period. Although the identification of patterns characteristic to each expansion period is interesting to practitioners (even if only in a posteriori fashion), further research should explore the meaning of such regularities and target to find a method to estimate future crisis.
The goal of this study is the analysis of the dynamical properties of financial data series from 32 worldwide stock market indices during the period 2000–2009 at a daily time horizon. Stock market indices are examples of complex interacting systems for which a huge amount of data exists. The methods and algorithms that have been explored for the description of physical phenomena become an effective background in the analysis of economical data. In this perspective are applied the classical concepts of signal analysis, Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional dynamical systems.
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995-2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of frac-tional calculus. The results reveal classification patterns typ-ical of fractional order systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.