Marine biofouling pollution is a process that impacts ecosystems and the global economy. On the other hand, traditional antifouling (AF) marine coatings release persistent and toxic biocides that accumulate in sediments and aquatic organisms. To understand the putative impact on marine ecosystems of recently described and patented AF xanthones (xanthones 1 and 2), able to inhibit mussel settlement without acting as biocides, several in silico environmental fate predictions (bioaccumulation, biodegradation, and soil absorption) were calculated in this work. Subsequently, a degradation assay using treated seawater at different temperatures and light exposures was conducted for a period of 2 months to calculate their half-life (DT50). Xanthone 2 was found to be non-persistent (DT50 < 60 days) at 50 μM, contrary to xanthone 1 (DT50 > 60 days). To evaluate the efficacy of both xanthones as AF agents, they were blended into four polymeric-based coating systems: polyurethane- and polydimethylsiloxane (PDMS)-based marine paints, as well as room-temperature-vulcanizing PDMS- and acrylic-based coatings. Despite their low water solubility, xanthones 1 and 2 demonstrated suitable leaching behaviors after 45 days. Overall, the generated xanthone-based coatings were able to decrease the attachment of the Mytilus galloprovincialis larvae after 40 h. This proof-of-concept and environmental impact evaluation will contribute to the search for truly environmental-friendly AF alternatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.